Young Soo Lim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2622153/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Significantly enhanced charge transport in polysilicon by alleviating grain boundary scattering through interface control using reduced graphene oxide. Journal of the Korean Ceramic Society, 2022, 59, 263-269.	2.3	0
2	Sonochemical activation in aqueous medium for solid-state synthesis of BaTiO3 powders. Ultrasonics Sonochemistry, 2022, 82, 105874.	8.2	4
3	Tailored electrostrain and related properties in (1Ââ°'ÂÂ <i>x</i>)BaTiO ₃ – <i>x</i> SrSnO ₃ Pbâ€free electroceramics. Journal of the American Ceramic Society, 2022, 105, 5751-5763.	3.8	3
4	Synthesis of N-type Bi2Te2.7Se0.3 Compounds through Oxide-Reduction Process and Related Thermoelectric Transport Properties. Journal of Korean Institute of Metals and Materials, 2022, 60, 463-470.	1.0	5
5	Significantly enhanced chemical stability in interface-controlled Cu2+Se-reduced graphene oxide composites and related thermoelectric performances. Journal of the European Ceramic Society, 2021, 41, 459-465.	5.7	13
6	Sonochemically activated solid-state synthesis of BaTiO3 powders. Journal of the European Ceramic Society, 2021, 41, 4826-4834.	5.7	13
7	Investigation for Thermoelectric Properties of the MoS ₂ Monolayer–Graphene Heterostructure: Density Functional Theory Calculations and Electrical Transport Measurements. ACS Omega, 2021, 6, 278-283.	3.5	16
8	Bader net charge analysis on doping effects of Sb in SnSe2 and related charge transport properties. Journal of Applied Physics, 2020, 127, .	2.5	7
9	Anomalous in-plane lattice thermal conductivity in an atomically thin two-dimensional α-GeTe layer. Physical Chemistry Chemical Physics, 2020, 22, 12273-12280.	2.8	4
10	Effect of Zn-Doping on the Phase Transition Behavior and Thermoelectric Transport Properties of Cu2Se. Journal of Korean Institute of Metals and Materials, 2020, 58, 466-471.	1.0	2
11	Gigantic Phonon-Scattering Cross Section To Enhance Thermoelectric Performance in Bulk Crystals. ACS Nano, 2019, 13, 8347-8355.	14.6	54
12	Thermoelectric Transport Properties of Interface-Controlled p-type Bismuth Antimony Telluride Composites by Reduced Graphene Oxide. Electronic Materials Letters, 2019, 15, 605-612.	2.2	11
13	Effects of Cl-Doping on Thermoelectric Transport Properties of Cu2Se Prepared by Spark Plasma Sintering. Journal of Electronic Materials, 2019, 48, 1958-1964.	2.2	18
14	Oxide Reduction Process for the Synthesis of p-Type BixSb2â^'xTe3 Compounds and Related Thermoelectric Transport Properties. Electronic Materials Letters, 2019, 15, 49-55.	2.2	3
15	Thermoelectric Transport Properties of Interface-Controlled <i>n</i> -type Bismuth Telluride Selenide Composites by Reduced Graphene Oxide. Journal of Korean Institute of Metals and Materials, 2019, 57, 603-608.	1.0	5
16	Ultralow Lattice Thermal Conductivity and Significantly Enhanced Near-Room-Temperature Thermoelectric Figure of Merit in α-Cu ₂ Se through Suppressed Cu Vacancy Formation by Overstoichiometric Cu Addition. Chemistry of Materials, 2018, 30, 3276-3284.	6.7	58
17	Comparison of the electronic and thermoelectric properties of three layered phases Bi2Te3, PbBi2Te4 and PbBi4Te7: LEGO thermoelectrics. AIP Advances, 2018, 8, .	1.3	11
18	Effect of Interface Control Using Multiwalled Carbon Nanotubes on the Thermoelectric Properties of TiO2 Nanocomposites. Journal of Korean Institute of Metals and Materials, 2018, 56, 538-543.	1.0	1

Young Soo Lim

#	Article	IF	CITATIONS
19	Effects of K-Doping on Thermoelectric Properties of Bi1â^'x K x CuOTe. Journal of Electronic Materials, 2017, 46, 2717-2723.	2.2	7
20	Seebeck Coefficients of Layered BiCuSeO Phases: Analysis of Their Hole-Density Dependence and Quantum Confinement Effect. Chemistry of Materials, 2017, 29, 2348-2354.	6.7	27
21	Hollow porous Cu particles from silica-encapsulated Cu ₂ O nanoparticle aggregates effectively catalyze 4-nitrophenol reduction. Nanoscale, 2017, 9, 3873-3880.	5.6	73
22	Synthesis of n -type Bi 2 Te 1-x Se x compounds through oxide reduction process and related thermoelectric properties. Journal of the European Ceramic Society, 2017, 37, 3361-3366.	5.7	12
23	A gigantically increased ratio of electrical to thermal conductivity and synergistically enhanced thermoelectric properties in interface-controlled TiO2–RGO nanocomposites. Nanoscale, 2017, 9, 7830-7838.	5.6	34
24	Enhanced thermoelectric performance of reduced graphene oxide incorporated bismuth-antimony-telluride by lattice thermal conductivity reduction. Journal of Alloys and Compounds, 2017, 718, 342-348.	5.5	49
25	Phonon-glass electron-crystals in ZnO-multiwalled carbon nanotube nanocomposites. Nanoscale, 2017, 9, 12941-12948.	5.6	17
26	Thermoelectric transport properties of tetradymite-type Pb1-Sn Bi2Te4 compounds. Journal of Alloys and Compounds, 2017, 690, 966-970.	5.5	7
27	Effects of Cu incorporation as an acceptor on the thermoelectric transport properties of Cu Bi2Te2.7Se0.3 compounds. Journal of Alloys and Compounds, 2017, 696, 213-219.	5.5	18
28	Colligative thermoelectric transport properties in n-type filled CoSb3 determined by guest electrons in a host lattice. Journal of Applied Physics, 2016, 119, 115104.	2.5	14
29	Composition-dependent charge transport and temperature-dependent density of state effective mass interpreted by temperature-normalized Pisarenko plot in Bi _{2â^<i>x</i>} Sb _{<i>x</i>} Te ₃ compounds. APL Materials, 2016, 4, 104812	5.1	14
30	Enhanced thermoelectric properties and their controllability in p-type (BiSb)2Te3 compounds through simultaneous adjustment of charge and thermal transports by Cu incorporation. Journal of Alloys and Compounds, 2016, 687, 320-325.	5.5	35
31	Enhanced Charge Transport in ZnO Nanocomposite Through Interface Control Using Multiwall Carbon Nanotubes. Journal of the American Ceramic Society, 2016, 99, 2077-2082.	3.8	10
32	Effects of doping on the positional uniformity of the thermoelectric properties of n-type Bi2Te2.7Se0.3 polycrystalline bulks. Journal of the Korean Physical Society, 2016, 68, 17-21.	0.7	6
33	Point defect-assisted doping mechanism and related thermoelectric transport properties in Pb-doped BiCuOTe. Journal of Materials Chemistry A, 2014, 2, 19759-19764.	10.3	40
34	Preparation and Thermoelectric Properties of Doped Bi2Te3-Bi2Se3 Solid Solutions. Journal of Electronic Materials, 2014, 43, 1650-1655.	2.2	21
35	Effects of Cu addition on band gap energy, density of state effective mass and charge transport properties in Bi ₂ Te ₃ composites. RSC Advances, 2014, 4, 43811-43814.	3.6	30
36	Structurally Nanocrystalline-Electrically Single Crystalline ZnO-Reduced Graphene Oxide Composites. Nano Letters, 2014, 14, 5104-5109.	9.1	64

Young Soo Lim

#	Article	IF	CITATIONS
37	Unoxidized Graphene/Alumina Nanocomposite: Fracture- and Wear-Resistance Effects of Graphene on Alumina Matrix. Scientific Reports, 2014, 4, 5176.	3.3	167
38	Condenson state and its effects on thermoelectric properties in In ₄ Se ₃ . Journal Physics D: Applied Physics, 2013, 46, 275304.	2.8	10
39	Nanograined thermoelectric Bi2Te2.7Se0.3 with ultralow phonon transport prepared from chemically exfoliated nanoplatelets. Journal of Materials Chemistry A, 2013, 1, 12791.	10.3	39
40	Sintering behaviour and microstructures of nanostructured ZnO–ZnS core–shell powder by spark plasma sintering. Philosophical Magazine, 2013, 93, 4221-4231.	1.6	3
41	Density of state effective mass and related charge transport properties in K-doped BiCuOSe. Applied Physics Letters, 2013, 103, .	3.3	69
42	Improved damp heat stability of Ga-Doped ZnO thin film by pretreatment of the polyethylene terephthalate substrate. Electronic Materials Letters, 2013, 9, 599-603.	2.2	3
43	High-temperature charge transport and thermoelectric properties of a degenerately Al-doped ZnO nanocomposite. Journal of Materials Chemistry, 2012, 22, 14633.	6.7	91
44	Control of the shell structure of ZnO–ZnS core-shell structure. Journal of Nanoparticle Research, 2011, 13, 5825-5831.	1.9	21
45	Thermoelectric Properties of Spark Plasma-Sintered In4Se3-In4Te3. Journal of Electronic Materials, 2011, 40, 1024-1028.	2.2	13
46	Improved thermal stability of ZnO transparent conducting films with a ZnO overlayer. Thin Solid Films, 2011, 519, 6840-6843.	1.8	11
47	CaO buffer layer for the growth of ZnO thin film. Solid State Communications, 2010, 150, 428-430.	1.9	12