Yongqiang Dong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2621968/publications.pdf

Version: 2024-02-01

218592 197736 7,968 48 26 49 citations g-index h-index papers 49 49 49 9534 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Carbonâ€Based Dots Coâ€doped with Nitrogen and Sulfur for High Quantum Yield and Excitationâ€Independent Emission. Angewandte Chemie - International Edition, 2013, 52, 7800-7804.	7.2	1,872
2	Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon, 2012, 50, 4738-4743.	5.4	1,540
3	Polyamine-Functionalized Carbon Quantum Dots as Fluorescent Probes for Selective and Sensitive Detection of Copper Ions. Analytical Chemistry, 2012, 84, 6220-6224.	3.2	904
4	One-step and high yield simultaneous preparation of single- and multi-layer graphene quantum dots from CX-72 carbon black. Journal of Materials Chemistry, 2012, 22, 8764.	6.7	546
5	Extraction of Electrochemiluminescent Oxidized Carbon Quantum Dots from Activated Carbon. Chemistry of Materials, 2010, 22, 5895-5899.	3.2	379
6	Graphene Quantum Dot as a Green and Facile Sensor for Free Chlorine in Drinking Water. Analytical Chemistry, 2012, 84, 8378-8382.	3.2	370
7	Dual-Emission of Lanthanide Metal–Organic Frameworks Encapsulating Carbon-Based Dots for Ratiometric Detection of Water in Organic Solvents. Analytical Chemistry, 2016, 88, 1748-1752.	3.2	243
8	Graphene quantum dots, graphene oxide, carbon quantum dots and graphite nanocrystals in coals. Nanoscale, 2014, 6, 7410-7415.	2.8	201
9	Graphitic Carbon Nitride Materials: Sensing, Imaging and Therapy. Small, 2016, 12, 5376-5393.	5.2	195
10	Graphene Quantum Dots as a Green Sensitizer to Functionalize ZnO Nanowire Arrays on Fâ€Doped SnO ₂ Glass for Enhanced Photoelectrochemical Water Splitting. Advanced Energy Materials, 2013, 3, 997-1003.	10.2	189
11	Graphene Quantum Dots/ <scp>I</scp> -Cysteine Coreactant Electrochemiluminescence System and Its Application in Sensing Lead(II) Ions. ACS Applied Materials & Diterfaces, 2014, 6, 1646-1651.	4.0	137
12	Luminescence origin of carbon based dots obtained from citric acid and amino group-containing molecules. Carbon, 2017, 118, 319-326.	5.4	129
13	Sensing applications of luminescent carbon based dots. Analyst, The, 2015, 140, 7468-7486.	1.7	124
14	Single-Atom Ruthenium Biomimetic Enzyme for Simultaneous Electrochemical Detection of Dopamine and Uric Acid. Analytical Chemistry, 2021, 93, 4916-4923.	3.2	119
15	Photoluminescence, chemiluminescence and anodic electrochemiluminescence of hydrazide-modified graphene quantum dots. Nanoscale, 2014, 6, 11240-11245.	2.8	78
16	Immobilizing water-soluble graphene quantum dots with gold nanoparticles for a low potential electrochemiluminescence immunosensor. Nanoscale, 2015, 7, 16366-16371.	2.8	68
17	Natural carbon-based dots from humic substances. Scientific Reports, 2015, 5, 10037.	1.6	61
18	Enhanced electrogenerated chemiluminescence behavior of C 3 N 4 QDs@ C 3 N 4 nanosheet and its signal-on aptasensing for platelet derived growth factor. Biosensors and Bioelectronics, 2017, 92, 695-701.	5.3	58

#	Article	IF	Citations
19	High photoluminescent carbon based dots with tunable emission color from orange to green. Nanoscale, 2017, 9, 1028-1032.	2.8	43
20	Colorimetric determination of glutathione by using a nanohybrid composed of manganese dioxide and carbon dots. Mikrochimica Acta, 2018, 185, 291.	2.5	43
21	Nitrogen and Sulfur Co-doped Carbon-Dot-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Imaging for Profiling Bisphenol S Distribution in Mouse Tissues. Analytical Chemistry, 2018, 90, 10872-10880.	3.2	43
22	Hybridizing Silver Nanoparticles in Hydrogel for High-Performance Flexible SERS Chips. ACS Applied Materials & Service (2022), 14, 26216-26224.	4.0	37
23	Highly sensitive electrochemiluminescent sensing platform based on graphite carbon nitride nanosheets for detection of pyrophosphate ion in the synovial fluid. Sensors and Actuators B: Chemical, 2016, 236, 8-15.	4.0	33
24	Electrochemiluminescent Behavior of Tris(2,2-bipyridine) Ruthenium(II)/Triethylamine in Ionic Liquid Solution. Journal of Physical Chemistry C, 2008, 112, 15570-15575.	1.5	27
25	"Turn-on―fluorescent detection of cyanide based on polyamine-functionalized carbon quantum dots. RSC Advances, 2014, 4, 3685-3689.	1.7	27
26	Nitrogen-doped carbon-based dots prepared by dehydrating EDTA with hot sulfuric acid and their electrocatalysis for oxygen reduction reaction. RSC Advances, 2014, 4, 32791-32795.	1.7	26
27	Carbon based dot capped silver nanoparticles for efficient surface-enhanced Raman scattering. Journal of Materials Chemistry C, 2016, 4, 7472-7477.	2.7	23
28	Nano-sized platinum as a mimic of uricase catalyzing the oxidative degradation of uric acid. Physical Chemistry Chemical Physics, 2011, 13, 6319.	1.3	22
29	TiN@VN Nanowire Arrays on 3D Carbon for Highâ€Performance Supercapacitors. ChemElectroChem, 2014, 1, 1027-1030.	1.7	22
30	Proteinâ€Directed In Situ Synthesis of Gold Nanoparticles on Reduced Graphene Oxide Modified Electrode for Nonenzymatic Glucose Sensing. Electroanalysis, 2012, 24, 2348-2353.	1.5	20
31	Effects of Câ€Related Dangling Bonds and Functional Groups on the Fluorescent and Electrochemiluminescent Properties of Carbonâ€Based Dots. Chemistry - A European Journal, 2018, 24, 4250-4254.	1.7	20
32	An Electrochemiluminescent Biosensor Based on Interactions between a Graphene Quantum Dotâ~Sulfite Coâ€reactant System and Hydrogen Peroxide. ChemElectroChem, 2017, 4, 1783-1789.	1.7	18
33	A highly sensitive signal-on biosensor for microRNA 142-3p based on the quenching of Ru(bpy) ₃ ²⁺ –TPA electrochemiluminescence by carbon dots and duplex specific nuclease-assisted target recycling amplification. Chemical Communications, 2020, 56, 6692-6695.	2.2	18
34	Tune the Fluorescence and Electrochemiluminescence of Graphitic Carbon Nitride Nanosheets by Controlling the Defect States. Chemistry - A European Journal, 2021, 27, 10925-10931.	1.7	18
35	A novel hybrid platform of g-C3N4 nanosheets /nucleic-acid-stabilized silver nanoclusters for sensing protein. Analytica Chimica Acta, 2019, 1091, 112-118.	2.6	14
36	Carbon-based dots for the electrochemical production of hydrogen peroxide. Chemical Communications, 2020, 56, 7609-7612.	2.2	14

#	Article	lF	CITATIONS
37	Carbon based dots capped tin oxide nanosheets hybridizing with silver nanoparticles for ultra-sensitive surface enhanced raman scattering substrate. Carbon, 2020, 170, 270-276.	5. 4	13
38	Hybridizing Carbon-Based Dot-Capped Manganese Dioxide Nanosheets and Gold Nanoparticles as a Highly Sensitive Surface-Enhanced Raman Scattering Substrate. Analytical Chemistry, 2021, 93, 9744-9751.	3.2	13
39	Ultra-high quantum yield ultraviolet fluorescence of graphitic carbon nitride nanosheets. Chemical Communications, 2019, 55, 15065-15068.	2.2	12
40	Hybridizing aggregated gold nanoparticles with a hydrogel to prepare a flexible SERS chip for detecting organophosphorus pesticides. Analyst, The, 2022, 147, 2802-2808.	1.7	11
41	Electrochemiluminescence for Characterizing the Polymerization Process during Graphitic Carbon Nitride Synthesis. ChemElectroChem, 2019, 6, 3742-3746.	1.7	10
42	Tuning the aggregation of silver nanoparticles with carbon dots for the surface-enhanced Raman scattering application. Carbon, 2021, 185, 442-448.	5 . 4	10
43	Reply to comment on "one-step and high yield simultaneous preparation of single- and multi-layer graphene quantum dots from CX-72 carbon black― Journal of Materials Chemistry, 2012, 22, 21777.	6.7	9
44	Fullereneâ€Structural Carbonâ€Based Dots from C ₆₀ Molecules and their Optical Properties. Particle and Particle Systems Characterization, 2016, 33, 916-923.	1.2	9
45	Green synthesis of red-emission carbon based dots by microbial fermentation. New Journal of Chemistry, 2018, 42, 8591-8595.	1.4	8
46	A simple enzyme-catalyzed reaction induced "switch―type fluorescence biosensor based on carbon nitride nanosheets for the assay of alkaline phosphatase activity. Analyst, The, 2020, 145, 6277-6282.	1.7	8
47	Carbon-based dot nanoclusters with enhanced roles of defect states in the fluorescence and singlet oxygen generation. New Journal of Chemistry, 2020, 44, 16461-16467.	1.4	7
48	False luminescence of molybdenum disulfide quantum dots from carbon dots. Chemical Communications, 2022, 58, 7180-7183.	2.2	2