
## Yuqi Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2621754/publications.pdf Version: 2024-02-01



Υποι Ζησπ

| #  | Article                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Simultaneously enhance the fire safety and mechanical properties of PLA by incorporating a cyclophosphazene-based flame retardant. E-Polymers, 2022, 22, 411-429.                                                                                                             | 3.0 | 11        |
| 2  | Superelastic Polyimide Nanofiber-Based Aerogels Modified with Silicone Nanofilaments for Ultrafast<br>Oil/Water Separation. ACS Applied Materials & Interfaces, 2021, 13, 20489-20500.                                                                                        | 8.0 | 53        |
| 3  | The preparation of electrospun PVDF/TBAC multi morphology nanofiber membrane and its application in direct contact membrane distillation. Macromolecular Rapid Communications, 2021, , 2100286.                                                                               | 3.9 | 4         |
| 4  | Preparation of Centella asiatica loaded gelatin/chitosan/nonwoven fabric composite hydrogel wound<br>dressing with antibacterial property. International Journal of Biological Macromolecules, 2021, 192,<br>350-359.                                                         | 7.5 | 23        |
| 5  | Solvent Vapor Strengthened Polyimide Nanofiber-Based Aerogels with High Resilience and<br>Controllable Porous Structure. ACS Applied Materials & Interfaces, 2020, 12, 53104-53114.                                                                                           | 8.0 | 18        |
| 6  | Preparation of PI/PTFE–PAI Composite Nanofiber Aerogels with Hierarchical Structure and<br>High-Filtration Efficiency. Nanomaterials, 2020, 10, 1806.                                                                                                                         | 4.1 | 12        |
| 7  | Hierarchical Structured Polyimide–Silica Hybrid Nano/Microfiber Filters Welded by Solvent Vapor for<br>Air Filtration. Polymers, 2020, 12, 2494.                                                                                                                              | 4.5 | 11        |
| 8  | Robust polyimide nano/microfibre aerogels welded by solvent-vapour for environmental applications.<br>Royal Society Open Science, 2019, 6, 190596.                                                                                                                            | 2.4 | 21        |
| 9  | Hydrogen Bond between Molybdate and Glucose for the Formation of Carbon-Loaded<br>MoS <sub>2</sub> Nanocomposites with High Electrochemical Performance. ACS Applied Materials<br>& Interfaces, 2019, 11, 34430-34440.                                                        | 8.0 | 19        |
| 10 | Facile fabrication and characterization on alginate microfibres with grooved structure via microfluidic spinning. Royal Society Open Science, 2019, 6, 181928.                                                                                                                | 2.4 | 20        |
| 11 | Morphology and crystallization behavior of<br>poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyvalerate)/polyhedral oligomeric silsesquioxane hybrids.<br>RSC Advances, 2019, 9, 8146-8158.                                                                                        | 3.6 | 7         |
| 12 | Morphology, Structure, and Properties of Conductive Polylactide Fibers Prepared Using Polyvinyl<br>Acetate and Multiwalled Carbon Nanotubes. Coatings, 2019, 9, 651.                                                                                                          | 2.6 | 3         |
| 13 | A review: the effect of the microporous support during interfacial polymerization on the morphology and performances of a thin film composite membrane for liquid purification. RSC Advances, 2019, 9, 35417-35428.                                                           | 3.6 | 69        |
| 14 | Roles of intrinsic Mn3+ sites and lattice oxygen in mechanochemical debromination and<br>mineralization of decabromodiphenyl ether with manganese dioxide. Chemosphere, 2018, 207, 41-49.                                                                                     | 8.2 | 27        |
| 15 | A facile method of preparing highly porous polylactide microfibers. Journal of Applied Polymer<br>Science, 2018, 135, 45860.                                                                                                                                                  | 2.6 | 4         |
| 16 | Biodegradable multiblock copolymers containing poly[(3-hydroxybutyrate)-co-(3-hydroxyvalerate)],<br>poly(lµ-caprolactone), and polyhedral oligomeric silsesquioxane: synthesis, characterization, and<br>tensile property. Colloid and Polymer Science, 2018, 296, 1667-1677. | 2.1 | 12        |
| 17 | Structure regulation and properties of melt-electrospinning composite filter materials. Fibers and Polymers, 2017, 18, 1568-1579.                                                                                                                                             | 2.1 | 17        |
| 18 | Experimental study and prediction of the diameter of melt-electrospinning polypropylene fiber. Fibers and Polymers, 2016, 17, 1227-1237.                                                                                                                                      | 2.1 | 18        |

Үиді Zhou

| #  | Article                                                                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Poly(É⁄ aprolactone)/polyhedral oligomeric silsesquioxane hybrids: Crystallization behavior and<br>thermal degradation. Journal of Applied Polymer Science, 2016, 133, .                                                                                                                                        | 2.6 | 2         |
| 20 | Structure and mechanical property of polylactide fibers manufactured by air drawing. Textile Reseach<br>Journal, 2016, 86, 948-959.                                                                                                                                                                             | 2.2 | 6         |
| 21 | Blends of polylactide and poly(3â€hydroxybutyrateâ€ <i>co</i> â€3â€hydroxyvalerate) with low content of<br>hydroxyvalerate unit: Morphology, structure, and property. Journal of Applied Polymer Science, 2015,<br>132, .                                                                                       | 2.6 | 26        |
| 22 | Structure and filtration performance of fibrous composite membranes containing environmentally friendly materials for water purification. Fibers and Polymers, 2015, 16, 2586-2592.                                                                                                                             | 2.1 | 10        |
| 23 | Effect of benzimidazolium salt on dispersion and properties of polyphenylene sulfide/organic clay nanocomposites via melt intercalation. Fibers and Polymers, 2015, 16, 1220-1229.                                                                                                                              | 2.1 | 10        |
| 24 | Poly(3-hydroxybutyrate) and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate): Structure, Property, and<br>Fiber. International Journal of Polymer Science, 2014, 2014, 1-11.                                                                                                                                        | 2.7 | 31        |
| 25 | Miscibility and Phase Morphology of Polylactide/Poly(vinyl acetate-co-vinyl alcohol) Blends Obtained<br>by Melt Mixing. Polymer-Plastics Technology and Engineering, 2014, 53, 1590-1597.                                                                                                                       | 1.9 | 7         |
| 26 | Preparation and thermal properties of polyphenylene sulfide/organic montmorillonite composites.<br>Fibers and Polymers, 2014, 15, 1685-1693.                                                                                                                                                                    | 2.1 | 17        |
| 27 | Nonisothermal Crystallization Kinetics of Poly(lactic acid)/Nanosilica Composites. Journal of<br>Macromolecular Science - Physics, 2013, 52, 334-343.                                                                                                                                                           | 1.0 | 16        |
| 28 | Blends of polylactide/thermoplactic elastomer: Miscibility, physical aging and crystallization behaviors. Fibers and Polymers, 2013, 14, 1688-1698.                                                                                                                                                             | 2.1 | 26        |
| 29 | Particular thermal properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) oligomers. Journal of<br>Polymer Research, 2012, 19, 1.                                                                                                                                                                           | 2.4 | 12        |
| 30 | Nonisothermal Crystallization Kinetics of Poly(ϵ-caprolactone)/Zinc Oxide Nanocomposites with High<br>Zinc Oxide Content. Journal of Macromolecular Science - Physics, 2011, 50, 2366-2375.                                                                                                                     | 1.0 | 6         |
| 31 | Block copolymers containing poly (3-hydroxybutyrate-co-3-hydroxyvalerate) and poly (É›-caprolactone)<br>units: Synthesis, characterization and thermal degradation. Fibers and Polymers, 2011, 12, 848-856.                                                                                                     | 2.1 | 13        |
| 32 | Nonisothermal crystallization kinetics of poly( <i>ε</i> â€caprolactone) blocks in double crystalline<br>triblock copolymers containing poly(3â€hydroxybutyrateâ€ <i>co</i> â€3â€hydroxyvalerate) and<br>poly(εâ€caprolactone) units. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 2288-2295. | 2.1 | 17        |