## Piotr A Gauden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2621570/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | <i>In silico</i> study on the effects of carbonyl groups on chemical equilibrium of reactions with a polar product occurring under confinement in pores of activated carbons. Chemical Engineering Communications, 2021, 208, 171-182. | 1.5 | 29        |
| 2  | The Finite Pore Volume GAB Adsorption Isotherm Model as a Simple Tool to Estimate a Diameter of Cylindrical Nanopores. Molecules, 2021, 26, 1509.                                                                                      | 1.7 | 23        |
| 3  | Atomic-scale molecular models of oxidized activated carbon fibre nanoregions: Examining the effects of oxygen functionalities on wet formaldehyde adsorption. Carbon, 2020, 165, 67-81.                                                | 5.4 | 19        |
| 4  | Effective Synthesis of Carbon Hybrid Materials Containing Oligothiophene Dyes. Materials, 2019, 12, 3354.                                                                                                                              | 1.3 | 13        |
| 5  | The effects of confinement in pores built of folded graphene sheets on the equilibrium of nitrogen monoxide dimerisation reaction. Journal of Physics Condensed Matter, 2019, 31, 135001.                                              | 0.7 | 25        |
| 6  | Super-sieving effect in phenol adsorption from aqueous solutions on nanoporous carbon beads.<br>Carbon, 2018, 135, 12-20.                                                                                                              | 5.4 | 34        |
| 7  | Carbon Nanohorns as Reaction Nanochambers – a Systematic Monte Carlo Study. Scientific Reports,<br>2018, 8, 15407.                                                                                                                     | 1.6 | 29        |
| 8  | The use of mathematical models for modelling sulphur dioxide sorption on materials produced from fly ashes. Energetika, 2018, 64, .                                                                                                    | 0.6 | 1         |
| 9  | Molecular simulation aided nanoporous carbon design for highly efficient low-concentrated formaldehyde capture. Carbon, 2017, 124, 152-160.                                                                                            | 5.4 | 30        |
| 10 | Monte Carlo study of chemical reaction equilibria in pores of activated carbons. RSC Advances, 2017,<br>7, 53667-53679.                                                                                                                | 1.7 | 6         |
| 11 | Morphologically disordered pore model for characterization of micro-mesoporous carbons. Carbon, 2017, 111, 358-370.                                                                                                                    | 5.4 | 25        |
| 12 | To what extent can mutual shifting of folded carbonaceous walls in slit-like pores affect their adsorption properties?. Journal of Physics Condensed Matter, 2016, 28, 015002.                                                         | 0.7 | 1         |
| 13 | New findings on the influence of carbon surface curvature on energetics of benzene adsorption from gaseous phase. Chemical Physics Letters, 2016, 645, 157-163.                                                                        | 1.2 | 4         |
| 14 | Carbon Nanohorns. , 2016, , 75-114.                                                                                                                                                                                                    |     | 1         |
| 15 | Cubic Carbon Polymorphs. , 2016, , 141-156.                                                                                                                                                                                            |     | 0         |
| 16 | The influence of geometric heterogeneity of closed carbon nanotube bundles on benzene adsorption from the gaseous phase-Monte Carlo simulations. Adsorption, 2016, 22, 639-651.                                                        | 1.4 | 8         |
| 17 | Using in-situ adsorption dilatometry for assessment of micropore size distribution in monolithic carbons. Carbon, 2016, 103, 263-272.                                                                                                  | 5.4 | 36        |
| 18 | Nano-Structured Carbon Matrixes Obtained from Chitin and Chitosan by a Novel Method. Journal of<br>Nanoscience and Nanotechnology, 2016, 16, 2623-2631.                                                                                | 0.9 | 12        |

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Water nanodroplet on a graphene surface—a new old system. Journal of Physics Condensed Matter,<br>2016, 28, 495002.                                                                                                  | 0.7 | 13        |
| 20 | Gyroidal nanoporous carbons - Adsorption and separation properties explored using computer simulations. Condensed Matter Physics, 2016, 19, 13003.                                                                   | 0.3 | 2         |
| 21 | Water at Curved Carbon Surface: Mechanisms of Adsorption Revealed by First Calorimetric Study.<br>Journal of Physical Chemistry C, 2015, 119, 2703-2715.                                                             | 1.5 | 10        |
| 22 | New insights into the ideal adsorbed solution theory. Physical Chemistry Chemical Physics, 2015, 17, 7232-7247.                                                                                                      | 1.3 | 25        |
| 23 | Intrinsic D <sub>2</sub> /H <sub>2</sub> Selectivity of NaX Zeolite: Interplay between Adsorption and<br>Kinetic Factors. Journal of Physical Chemistry C, 2015, 119, 15373-15380.                                   | 1.5 | 16        |
| 24 | Effects of Critical Fluctuations on Adsorption-Induced Deformation of Microporous Carbons.<br>Journal of Physical Chemistry C, 2015, 119, 6111-6120.                                                                 | 1.5 | 8         |
| 25 | Nuclear Quantum Effects in the Layering and Diffusion of Hydrogen Isotopes in Carbon Nanotubes.<br>Journal of Physical Chemistry Letters, 2015, 6, 3367-3372.                                                        | 2.1 | 15        |
| 26 | Properties of Phenol Confined in Realistic Carbon Micropore Model: Experiment and Simulation.<br>Journal of Physical Chemistry C, 2015, 119, 19987-19995.                                                            | 1.5 | 14        |
| 27 | Folding of graphene slit like pore walls—a simple method of improving CO <sub>2</sub> separation<br>from mixtures with CH <sub>4</sub> or N <sub>2</sub> . Journal of Physics Condensed Matter, 2014, 26,<br>485006. | 0.7 | 7         |
| 28 | Synthesis of carbon nanotubes and nanotube forests on copper catalyst. Materials Research Express, 2014, 1, 035040.                                                                                                  | 0.8 | 11        |
| 29 | MD simulation of organics adsorption from aqueous solution in carbon slit-like pores. Foundations of the pore blocking effect. Journal of Physics Condensed Matter, 2014, 26, 055008.                                | 0.7 | 10        |
| 30 | Toward in silico modeling of palladium–hydrogen–carbon nanohorn nanocomposites. Physical<br>Chemistry Chemical Physics, 2014, 16, 11763-11769.                                                                       | 1.3 | 5         |
| 31 | Carbon Molecular Sieves: Reconstruction of Atomistic Structural Models with Experimental Constraints. Journal of Physical Chemistry C, 2014, 118, 12996-13007.                                                       | 1.5 | 21        |
| 32 | Surface to volume ratio of carbon nanohorn – A crucial factor in CO2/CH4 mixture separation.<br>Chemical Physics Letters, 2014, 595-596, 67-72.                                                                      | 1.2 | 7         |
| 33 | Carbon nanotubes as potential material for drug delivery—experiment and simulation. Adsorption, 2013, 19, 269-272.                                                                                                   | 1.4 | 5         |
| 34 | Synergetic effect of carbon nanopore size and surface oxidation on CO2 capture from CO2/CH4 mixtures. Journal of Colloid and Interface Science, 2013, 397, 144-153.                                                  | 5.0 | 42        |
| 35 | Porosity of closed carbon nanotubes compressed using hydraulic pressure. Adsorption, 2013, 19, 785-793.                                                                                                              | 1.4 | 4         |
| 36 | Carbon materials as new nanovehicles in hot-melt drug deposition. Journal of Physics Condensed<br>Matter, 2013, 25, 355002.                                                                                          | 0.7 | 9         |

| #  | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | To the pore and through the pore: thermodynamics and kinetics of helium in exotic cubic carbon polymorphs. Physical Chemistry Chemical Physics, 2013, 15, 17366.                                                                                                 | 1.3 | 6         |
| 38 | The first atomistic modelling-aided reproduction of morphologically defective single walled carbon nanohorns. Physical Chemistry Chemical Physics, 2013, 15, 1232-1240.                                                                                          | 1.3 | 10        |
| 39 | Influence of activated carbon surface oxygen functionalities on SO2 physisorption – Simulation and experiment. Chemical Physics Letters, 2013, 578, 85-91.                                                                                                       | 1.2 | 32        |
| 40 | Screening of carbonaceous nanoporous materials for capture of nerve agents. Physical Chemistry<br>Chemical Physics, 2013, 15, 291-298.                                                                                                                           | 1.3 | 25        |
| 41 | Constant Pressure Path Integral Gibbs Ensemble Monte Carlo Method. Journal of Chemical Theory and Computation, 2013, 9, 2922-2929.                                                                                                                               | 2.3 | 11        |
| 42 | Detecting adsorption space in carbon nanotubes by benzene uptake. Journal of Colloid and Interface<br>Science, 2013, 391, 74-85.                                                                                                                                 | 5.0 | 13        |
| 43 | Applicability of molecular simulations for modelling the adsorption of the greenhouse gas CF4on carbons. Journal of Physics Condensed Matter, 2013, 25, 015004.                                                                                                  | 0.7 | 10        |
| 44 | Separation of CO2–CH4 mixtures on defective single walled carbon nanohorns – tip does matter.<br>Physical Chemistry Chemical Physics, 2013, 15, 16468.                                                                                                           | 1.3 | 15        |
| 45 | Simulation of SF6 adsorption on the bundles of single walled carbon nanotubes. Microporous and<br>Mesoporous Materials, 2012, 154, 51-55.                                                                                                                        | 2.2 | 15        |
| 46 | Cryogenic Noble Gas Separation without Distillation: The Effect of Carbon Surface Curvature on<br>Adsorptive Separation. Journal of Physical Chemistry C, 2012, 116, 19363-19371.                                                                                | 1.5 | 6         |
| 47 | Methane-Induced Deformation of Porous Carbons: From Normal to High-Pressure Operating Conditions. Journal of Physical Chemistry C, 2012, 116, 1740-1747.                                                                                                         | 1.5 | 24        |
| 48 | Virtual Porous Carbons. , 2012, , 61-104.                                                                                                                                                                                                                        |     | 10        |
| 49 | Displacement of Methane by Coadsorbed Carbon Dioxide Is Facilitated In Narrow Carbon Nanopores.<br>Journal of Physical Chemistry C, 2012, 116, 13640-13649.                                                                                                      | 1.5 | 48        |
| 50 | Structural properties of amorphous diamond-like carbon: percolation, cluster, and pair correlation analysis. RSC Advances, 2012, 2, 4292.                                                                                                                        | 1.7 | 18        |
| 51 | Enhanced adsorption of paracetamol on closed carbon nanotubes by formation of nanoaggregates:<br>Carbon nanotubes as potential materials in hot-melt drug deposition-experiment and simulation.<br>Journal of Colloid and Interface Science, 2012, 376, 209-216. | 5.0 | 19        |
| 52 | Removal of internal caps during hydrothermal treatment of bamboo-like carbon nanotubes and application of tubes in phenol adsorption. Journal of Colloid and Interface Science, 2012, 381, 36-42.                                                                | 5.0 | 30        |
| 53 | Material Storage Mechanism in Porous Nanocarbon – Comparison between Experiment and<br>Simulation. Computational Methods in Science and Technology, 2012, 18, 45-51.                                                                                             | 0.3 | 1         |
| 54 | Quantum fluctuations increase the self-diffusive motion of para-hydrogen in narrow carbon nanotubes. Physical Chemistry Chemical Physics, 2011, 13, 9824.                                                                                                        | 1.3 | 4         |

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Optimization of Coarse-Grained Interaction Potential: Inside Inherent Limitations of Coarse-Graining<br>Methods. Journal of Physical Chemistry B, 2011, 115, 6985-6994.                                                            | 1.2 | 7         |
| 56 | Equilibrium clusters in concentrated lysozyme protein solutions. Journal of Colloid and Interface Science, 2011, 363, 579-584.                                                                                                     | 5.0 | 31        |
| 57 | First Molecular Dynamics simulation insight into the mechanism of organics adsorption from aqueous solutions on microporous carbons. Chemical Physics Letters, 2011, 515, 102-108.                                                 | 1.2 | 22        |
| 58 | Cryogenic Helium Adsorbed in Zeolite Rho: Inside Localization Controlled Self-Diffusion of Confined Quantum Particles. Journal of Physical Chemistry C, 2011, 115, 18105-18110.                                                    | 1.5 | 3         |
| 59 | Molecular dynamics of zigzag single walled carbon nanotube immersion in water. Physical Chemistry<br>Chemical Physics, 2011, 13, 5621.                                                                                             | 1.3 | 10        |
| 60 | Simulating the effect of carbon nanotube curvature on adsorption of polycyclic aromatic hydrocarbons. Adsorption, 2011, 17, 1-4.                                                                                                   | 1.4 | 22        |
| 61 | Simulating the changes in carbon structure during the burn-off process. Journal of Colloid and Interface Science, 2011, 360, 211-219.                                                                                              | 5.0 | 17        |
| 62 | Phenol adsorption on closed carbon nanotubes. Journal of Colloid and Interface Science, 2011, 361, 288-292.                                                                                                                        | 5.0 | 23        |
| 63 | The influence of the carbon surface chemical composition on Dubinin–Astakhov equation parameters calculated from SF6adsorption data—grand canonical Monte Carlo simulation. Journal of Physics Condensed Matter, 2011, 23, 395005. | 0.7 | 5         |
| 64 | Some Remarks on the Classification of Water Vapor Sorption Isotherms and Blahovec and Yanniotis<br>Isotherm Equation. Drying Technology, 2011, 29, 984-991.                                                                        | 1.7 | 18        |
| 65 | Simple model of adsorption on external surface of carbon nanotubes—aÂnew analytical approach basing on molecular simulation data. Adsorption, 2010, 16, 197-213.                                                                   | 1.4 | 23        |
| 66 | Monolayer aspects of high-resolution $\hat{I}\pm s$ -plots. Applied Surface Science, 2010, 256, 5285-5291.                                                                                                                         | 3.1 | 3         |
| 67 | The system of carbon tetrachloride and closed carbon nanotubes analyzed by a combination of molecular simulations, analytical modeling, and adsorption calorimetry. Journal of Colloid and Interface Science, 2010, 349, 321-330.  | 5.0 | 6         |
| 68 | BET surface area of carbonaceous adsorbents—Verification using geometric considerations and<br>GCMC simulations on virtual porous carbon models. Applied Surface Science, 2010, 256, 5204-5209.                                    | 3.1 | 23        |
| 69 | Studies of the reactivity of carbon nanotubes towards selected alkali cations and chlorides based on the HSAB theory. Catalysis Today, 2010, 150, 147-150.                                                                         | 2.2 | 5         |
| 70 | Surface area of closed carbon nanotubes determined from room temperature measurements of alcohols adsorption. Chemical Physics Letters, 2010, 499, 141-145.                                                                        | 1.2 | 5         |
| 71 | The influence of carbon surface oxygen groups on Dubinin–Astakhov equation parameters calculated from CO <sub>2</sub> adsorption isotherm. Journal of Physics Condensed Matter, 2010, 22, 085003.                                  | 0.7 | 24        |
| 72 | Microscopic model of carbonaceous nanoporous molecular sieves—anomalous transport in<br>molecularly confined spaces. Physical Chemistry Chemical Physics, 2010, 12, 11351.                                                         | 1.3 | 17        |

| #  | Article                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Carbon Dioxide Adsorption-Induced Deformation of Microporous Carbons. Journal of Physical Chemistry C, 2010, 114, 5126-5133.                                                                                                                                   | 1.5 | 61        |
| 74 | Nanoporous Quantum Filters: Inside Vaporâ^'Liquid Transitions of Quantum Fluids in Nanopores.<br>Journal of Physical Chemistry B, 2010, 114, 5047-5052.                                                                                                        | 1.2 | 11        |
| 75 | Optimal Single-Walled Carbon Nanotube Vessels for Short-Term Reversible Storage of Carbon Dioxide<br>at Ambient Temperatures. Journal of Physical Chemistry C, 2010, 114, 21465-21473.                                                                         | 1.5 | 26        |
| 76 | Activated carbon immersed in water—the origin of linear correlation between enthalpy of immersion<br>and oxygen content studied by molecular dynamics simulation. Physical Chemistry Chemical Physics,<br>2010, 12, 10701.                                     | 1.3 | 7         |
| 77 | Molecular dynamics simulation insight into the mechanism of phenol adsorption at low coverages from aqueous solutions on microporous carbons. Physical Chemistry Chemical Physics, 2010, 12, 812-817.                                                          | 1.3 | 35        |
| 78 | Adsorption potential distributions for carbons having defined pore structure—GCMC simulations of the effect of heterogeneity. Adsorption, 2009, 15, 99-113.                                                                                                    | 1.4 | 6         |
| 79 | The HSAB principle as a means to interpret the reactivity of carbon nanotubes. Applied Surface Science, 2009, 255, 4782-4786.                                                                                                                                  | 3.1 | 11        |
| 80 | Frequency-Dependent Diffusion Constant of Quantum Fluids from Path Integral Monte Carlo and<br>Tikhonov's Regularizing Functional. Journal of Chemical Theory and Computation, 2009, 5, 1990-1996.                                                             | 2.3 | 5         |
| 81 | Can carbon surface oxidation shift the pore size distribution curve calculated from Ar,<br>N <sub>2</sub> and CO <sub>2</sub> adsorption isotherms? Simulation results for a realistic carbon<br>model. Journal of Physics Condensed Matter, 2009, 21, 315005. | 0.7 | 35        |
| 82 | Ar, CCl4 and C6H6 adsorption outside and inside of the bundles of multi-walled carbon nanotubes—simulation study. Physical Chemistry Chemical Physics, 2009, 11, 4982.                                                                                         | 1.3 | 19        |
| 83 | Searching the most optimal model of water sorption on foodstuffs in the whole range of relative humidity. Food Research International, 2009, 42, 1203-1214.                                                                                                    | 2.9 | 72        |
| 84 | Impact of the carbon pore size and topology on the equilibrium quantum sieving of hydrogen isotopes at zero coverage and finite pressures. Journal of Physics Condensed Matter, 2009, 21, 144210.                                                              | 0.7 | 21        |
| 85 | Role of Short-Range Directional Interactions in Coarse-Graining of Protic/Aprotic Liquids. Journal of Physical Chemistry B, 2009, 113, 12988-12998.                                                                                                            | 1.2 | 10        |
| 86 | Fullerene-Intercalated Graphene Nano-Containers — Mechanism of Argon Adsorption and<br>High-Pressure CH <sub>4</sub> and CO <sub>2</sub> Storage Capacities. Adsorption Science and<br>Technology, 2009, 27, 281-296.                                          | 1.5 | 35        |
| 87 | Adsorption from aqueous solutions on opened carbon nanotubes—organic compounds speed up<br>delivery of water from inside. Physical Chemistry Chemical Physics, 2009, 11, 9341.                                                                                 | 1.3 | 20        |
| 88 | Static and thermodynamic properties of low-density supercritical 4He—breakdown of the<br>Feynman–Hibbs approximation. Physical Chemistry Chemical Physics, 2009, 11, 9182.                                                                                     | 1.3 | 13        |
| 89 | Determination of the space between closed multiwalled carbon nanotubes by GCMC simulation of nitrogen adsorption. Journal of Colloid and Interface Science, 2008, 317, 442-448.                                                                                | 5.0 | 23        |
| 90 | Carbon surface chemical composition in para-nitrophenol adsorption determined under real oxic and anoxic conditions. Journal of Colloid and Interface Science, 2008, 320, 40-51.                                                                               | 5.0 | 12        |

| #   | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Water adsorption on carbons — Critical review of the most popular analytical approaches. Advances<br>in Colloid and Interface Science, 2008, 137, 82-143.                                                                                             | 7.0 | 109       |
| 92  | Argon adsorption in channel-like mesoporous carbons at 77K: Grand Canonical Monte Carlo simulations and pore size analysis. Microporous and Mesoporous Materials, 2008, 116, 665-669.                                                                 | 2.2 | 6         |
| 93  | Cryogenic Separation of Hydrogen Isotopes in Single-Walled Carbon and Boron-Nitride Nanotubes:<br>Insight into the Mechanism of Equilibrium Quantum Sieving in Quasi-One-Dimensional Pores. Journal<br>of Physical Chemistry B, 2008, 112, 8275-8284. | 1.2 | 42        |
| 94  | Heterogeneity on high-resolution αs plots for carbon nanotubes—GCMC study. Physical Chemistry<br>Chemical Physics, 2008, 10, 4551.                                                                                                                    | 1.3 | 5         |
| 95  | Testing isotherm models and recovering empirical relationships for adsorption in microporous carbons using virtual carbon models and grand canonical Monte Carlo simulations. Journal of Physics Condensed Matter, 2008, 20, 385212.                  | 0.7 | 18        |
| 96  | One-Step Steam Pyrolysis Preparation and Characterization of Spherical Carbon Adsorbents Obtained from Ion-Exchange Resins. Adsorption Science and Technology, 2008, 26, 407-413.                                                                     | 1.5 | 1         |
| 97  | How realistic is the pore size distribution calculated from adsorption isotherms if activated carbon is composed of fullerene-like fragments?. Physical Chemistry Chemical Physics, 2007, 9, 5919.                                                    | 1.3 | 70        |
| 98  | Hyper-parallel tempering Monte Carlo simulations of Ar adsorption in new models of microporous non-graphitizing activated carbon: effect of microporosity. Journal of Physics Condensed Matter, 2007, 19, 406208.                                     | 0.7 | 43        |
| 99  | Thermodynamics of Hydrogen Adsorption in Slit-like Carbon Nanopores at 77 K. Classical versus<br>Path-Integral Monte Carlo Simulations. Langmuir, 2007, 23, 3666-3672.                                                                                | 1.6 | 56        |
| 100 | Impact of the interaction with the positive charge in adsorption of benzene and other organic compounds from aqueous solutions on carbons. Applied Surface Science, 2007, 253, 4006-4009.                                                             | 3.1 | 6         |
| 101 | Applicability of the generalised D'Arcy and Watt model to description of water sorption on pineapple and other foodstuffs. Journal of Food Engineering, 2007, 79, 718-723.                                                                            | 2.7 | 50        |
| 102 | Bimodal pore size distributions for carbons: Experimental results and computational studies. Journal of Colloid and Interface Science, 2007, 310, 205-216.                                                                                            | 5.0 | 24        |
| 103 | Effective diffusion coefficient determination within cylindrical granules of adsorbents using a direct simulation method. Journal of Colloid and Interface Science, 2007, 313, 449-453.                                                               | 5.0 | 6         |
| 104 | CO2 sorption on substituted carbon materials. Applied Surface Science, 2007, 253, 5726-5731.                                                                                                                                                          | 3.1 | 29        |
| 105 | The general mechanism of water sorption on foodstuffs – Importance of the multitemperature fitting of data and the hierarchy of models. Journal of Food Engineering, 2007, 82, 528-535.                                                               | 2.7 | 60        |
| 106 | Thermodynamics of the CMMS Approach and Carbon Surface Chemistry in SO2Adsorption. Langmuir, 2006, 22, 6887-6892.                                                                                                                                     | 1.6 | 13        |
| 107 | State of Hydrogen in Idealized Carbon Slitlike Nanopores at 77 K. Langmuir, 2006, 22, 1970-1972.                                                                                                                                                      | 1.6 | 42        |
| 108 | Grand Canonical Monte Carlo Simulation Study of Hydrogen Storage in Ordered Mesoporous<br>Carbons at 303 K. Adsorption Science and Technology, 2006, 24, 411-426.                                                                                     | 1.5 | 4         |

| #   | Article                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Pearson's Hard-Soft Acid-Base Principle as a Means of Interpreting the Reactivity of Carbon Materials.<br>Adsorption Science and Technology, 2006, 24, 389-402.                                                                                                          | 1.5 | 16        |
| 110 | Thermodynamic properties of benzene adsorbed in activated carbons and multi-walled carbon nanotubes. Chemical Physics Letters, 2006, 421, 409-414.                                                                                                                       | 1.2 | 59        |
| 111 | Benzene adsorption on carbonaceous materials: The influence of pore structure on the state of the adsorbate. Applied Surface Science, 2006, 253, 2525-2539.                                                                                                              | 3.1 | 11        |
| 112 | Changes of the porous structure of activated carbons applied in a filter bed pilot operation. Journal of Colloid and Interface Science, 2006, 295, 327-347.                                                                                                              | 5.0 | 20        |
| 113 | Corrected thermodynamic description of adsorption via formalism of the theory of volume filling of micropores. Journal of Colloid and Interface Science, 2006, 298, 66-73.                                                                                               | 5.0 | 7         |
| 114 | Some remarks on the calculation of the pore size distribution function of activated carbons. Journal of Colloid and Interface Science, 2006, 300, 453-474.                                                                                                               | 5.0 | 20        |
| 115 | Simple models of adsorption in nanotubes. Journal of Colloid and Interface Science, 2006, 295, 310-317.                                                                                                                                                                  | 5.0 | 20        |
| 116 | New approach to determination of surface heterogeneity of adsorbents and catalysts from the temperature programmed desorption (TPD) technique: One step beyond the condensation approximation (CA) method. Journal of Colloid and Interface Science, 2005, 291, 334-344. | 5.0 | 16        |
| 117 | Heterogeneous Do–Do model of water adsorption on carbons. Journal of Colloid and Interface<br>Science, 2005, 290, 1-13.                                                                                                                                                  | 5.0 | 42        |
| 118 | Parameterization of the corrected Dubinin–Serpinsky adsorption isotherm equation. Journal of<br>Colloid and Interface Science, 2005, 291, 600-605.                                                                                                                       | 5.0 | 12        |
| 119 | Does the Dubinin–Serpinsky theory adequately describe water adsorption on adsorbents with high-energy centers?. Journal of Colloid and Interface Science, 2005, 282, 249-260.                                                                                            | 5.0 | 19        |
| 120 | Improvement of the Derjaguin-Broekhoff-de Boer Theory for the Capillary Condensation/Evaporation<br>of Nitrogen in Spherical Cavities and Its Application for the Pore Size Analysis of Silicas with Ordered<br>Cagelike Mesopores. Langmuir, 2005, 21, 10530-10536.     | 1.6 | 16        |
| 121 | Effect of the Carbon Surface Layer Chemistry on Benzene Adsorption from the Vapor Phase and from<br>Dilute Aqueous Solutions. Langmuir, 2005, 21, 12257-12267.                                                                                                           | 1.6 | 23        |
| 122 | Description of benzene adsorption in slit-like pores. Theoretical foundations of the improved<br>Horvath–Kawazoe method. Carbon, 2004, 42, 851-864.                                                                                                                      | 5.4 | 13        |
| 123 | Estimating the pore size distribution of activated carbons from adsorption data of different adsorbates by various methods. Journal of Colloid and Interface Science, 2004, 273, 39-63.                                                                                  | 5.0 | 66        |
| 124 | The applicability of the numerical algorithm for the evaluation of isosteric heat of adsorption.<br>Carbon, 2004, 42, 53-58.                                                                                                                                             | 5.4 | 8         |
| 125 | Impact of an adsorbed phase nonideality in the calculation of the filling pressure of carbon slit-like micropores. Carbon, 2004, 42, 573-583.                                                                                                                            | 5.4 | 14        |
| 126 | The evaluation of the surface heterogeneity of carbon blacks from the lattice density functional theory. Carbon, 2004, 42, 1813-1823.                                                                                                                                    | 5.4 | 15        |

| #   | Article                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Estimation of the pore-size distribution function from the nitrogen adsorption isotherm. Comparison of density functional theory and the method of Do and co-workers. Carbon, 2003, 41, 1113-1125.                                                                    | 5.4 | 78        |
| 128 | Developing the solution analogue of the Toth adsorption isotherm equation. Journal of Colloid and Interface Science, 2003, 266, 473-476.                                                                                                                              | 5.0 | 75        |
| 129 | The comparative characterization of structural heterogeneity of mesoporous activated carbon fibers<br>(ACFs). Applied Surface Science, 2003, 206, 67-77.                                                                                                              | 3.1 | 44        |
| 130 | Toward Solving the Unstable Linear Fredholm Equation of the First Kind:Â A New Procedure Called the<br>Adsorption Stochastic Algorithm (ASA) and Its Properties. Langmuir, 2003, 19, 4253-4268.                                                                       | 1.6 | 38        |
| 131 | Numerical Analysis of the Horvath–Kawazoe Equation — The Adsorption of Nitrogen, Argon, Benzene,<br>Carbon Tetrachloride and Sulphur Hexafluoride. Adsorption Science and Technology, 2002, 20,<br>295-305.                                                           | 1.5 | 12        |
| 132 | The Application of a CONTIN Package for the Evaluation of Micropore Size Distribution Functions.<br>Langmuir, 2002, 18, 5406-5413.                                                                                                                                    | 1.6 | 23        |
| 133 | The Simple Procedure of the Calculation of Diffusion Coefficient for Adsorption on Spherical and Cylindrical Adsorbent Particles—Experimental Verification. Journal of Colloid and Interface Science, 2002, 249, 256-261.                                             | 5.0 | 17        |
| 134 | Homogeneous and Heterogeneous Micropore Structures in Carbonaceous Adsorbents—Twenty Years<br>Later. Journal of Colloid and Interface Science, 2002, 254, 242-249.                                                                                                    | 5.0 | 4         |
| 135 | Evaluation of the Structural and Energetic Heterogeneity of Microporous Carbons by Means of Novel<br>Numerical Methods and Genetic Algorithms. Journal of Colloid and Interface Science, 2002, 256,<br>378-395.                                                       | 5.0 | 28        |
| 136 | New relationships between the characteristic energy of adsorption and the average effective diameter of carbon slit-like micropores. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 201, 17-30.                                              | 2.3 | 15        |
| 137 | Numerical analysis of Horvath–Kawazoe equation. Computers & Chemistry, 2002, 26, 125-130.                                                                                                                                                                             | 1.2 | 32        |
| 138 | What kind of pore size distribution is assumed in the Dubinin–Astakhov adsorption isotherm<br>equation?. Carbon, 2002, 40, 2879-2886.                                                                                                                                 | 5.4 | 73        |
| 139 | THE SIMPLE PROCEDURE OF THE CALCULATION OF DIFFUSION COEFFICIENT FOR ADSORPTION ON SPHERICAL AND CYLINDRICAL ADSORBENT PARTICLES. Separation Science and Technology, 2001, 36, 513-525.                                                                               | 1.3 | 21        |
| 140 | New relationships between the characteristic energy of adsorption and the average effective diameter of carbon slit-like micropores — the dependence on the type of an adsorbate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 177, 57-68. | 2.3 | 19        |
| 141 | Energetics of water adsorption and immersion on carbons. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 179, 39-55.                                                                                                                          | 2.3 | 13        |
| 142 | A Simple Method of the Determination of the Structural Heterogeneity of Microporous Solids.<br>Journal of Colloid and Interface Science, 2001, 236, 387-390.                                                                                                          | 5.0 | 0         |
| 143 | The Characterization of Microporous Activated Carbons Utilizing a Simple Adsorption Genetic Algorithm (SAGA). Journal of Colloid and Interface Science, 2001, 239, 591-594.                                                                                           | 5.0 | 1         |
| 144 | Toward the Characterization of Microporosity of Carbonaceous Films. Journal of Colloid and Interface Science, 2001, 243, 183-192.                                                                                                                                     | 5.0 | 46        |

| #   | Article                                                                                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Characterization of Microporous Carbon Materials by Means of a New Gamma-Type Adsorption<br>Isotherm Equation. Journal of Colloid and Interface Science, 2001, 243, 300-305.                                                                                                                                                            | 5.0 | 5         |
| 146 | The Comparative Analysis of the Properties of Two Micropore-Size Distribution Functions: The<br>Pfeifer–Avnir Function and the Gamma-Type One. Journal of Colloid and Interface Science, 2001, 244,<br>439-443.                                                                                                                         | 5.0 | 4         |
| 147 | The new correlation between microporosity of strictly microporous activated carbons and fractal dimension on the basis of the Polanyi–Dubinin theory of adsorption. Carbon, 2001, 39, 267-278.                                                                                                                                          | 5.4 | 41        |
| 148 | The Normalization of the Micropore-Size Distribution Function in the Polanyi–Dubinin Type of<br>Adsorption Isotherm Equations. Journal of Colloid and Interface Science, 2000, 227, 482-494.                                                                                                                                            | 5.0 | 17        |
| 149 | Energetics of water adsorption and immersion on carbons. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 148, 271-281.                                                                                                                                                                                          | 2.3 | 16        |
| 150 | Fractal dimension of microporous carbon on the basis of Polanyi–Dubinin theory of adsorption. Part<br>IV. The comparative analysis of two alternative solutions of the overall adsorption isotherm<br>equation for microporous fractal solids. Colloids and Surfaces A: Physicochemical and Engineering<br>Aspects, 1999, 152, 293-313. | 2.3 | 39        |
| 151 | Comments on "An Isotherm Equation for Adsorption on Fractal Surfaces of Heterogeneous Porous<br>Materials― Langmuir, 1999, 15, 285-288.                                                                                                                                                                                                 | 1.6 | 16        |
| 152 | New relationships between the characteristic energy of nitrogen adsorption (at 77.5 K) and the average effective diameter of carbon slit-like micropores. Carbon, 1998, 36, 1703-1706.                                                                                                                                                  | 5.4 | 19        |
| 153 | Thermodynamics of Adsorption on Microporous Fractal Solids. Magyar Apróvad Közlemények, 1998, 54,<br>351-361.                                                                                                                                                                                                                           | 1.4 | 5         |
| 154 | Fractal dimension of microporous carbon on the basis of the Polanyi-Dubinin theory of adsorption.<br>Part 3: Adsorption and adsorption thermodynamics in the micropores of fractal carbons. Colloids<br>and Surfaces A: Physicochemical and Engineering Aspects, 1998, 136, 245-261.                                                    | 2.3 | 23        |
| 155 | Fractal dimension of microporous carbon on the basis of the Polanyi-Dubinin theory of adsorption.<br>Part 2: Dubinin-Astakhov adsorption isotherm equation. Colloids and Surfaces A: Physicochemical and<br>Engineering Aspects, 1997, 126, 67-73.                                                                                      | 2.3 | 26        |
| 156 | Some remarks on the link between the adsorption potential distribution and energetic heterogeneity of an adsorbent. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 111, 147-149.                                                                                                                               | 2.3 | 2         |
| 157 | Fractal dimension of microporous carbon on the basis of Polanyi-Dubinin theory of adsorption.<br>Dubinin-Radushkevich adsorption isotherm equation. Colloids and Surfaces A: Physicochemical and<br>Engineering Aspects, 1996, 119, 175-181.                                                                                            | 2.3 | 30        |