F X Timmes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2621473/publications.pdf

Version: 2024-02-01

		109137	168136
53	12,081	35	53
papers	citations	h-index	g-index
F.0	5 2	5 0	6100
53	53	53	6198
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Observing Intermediate-mass Black Holes and the Upper Stellar-mass gap with LIGO and Virgo. Astrophysical Journal, 2022, 924, 39.	1.6	32
2	Stable nickel production in type la supernovae: A smoking gun for the progenitor mass?. Astronomy and Astrophysics, 2022, 660, A96.	2.1	16
3	A highly magnified star at redshift 6.2. Nature, 2022, 603, 815-818.	13.7	53
4	Modifying the Free Energy in Skye. Research Notes of the AAS, 2022, 6, 43.	0.3	1
5	On the Impact of ²² Ne on the Pulsation Periods of Carbon–Oxygen White Dwarfs with Helium-dominated Atmospheres. Astrophysical Journal, 2021, 910, 24.	1.6	14
6	Skye: A Differentiable Equation of State. Astrophysical Journal, 2021, 913, 72.	1.6	45
7	On Stellar Evolution in a Neutrino Hertzsprung–Russell Diagram. Astrophysical Journal, 2020, 893, 133.	1.6	15
8	Presupernova Neutrinos: Directional Sensitivity and Prospects for Progenitor Identification. Astrophysical Journal, 2020, 899, 153.	1.6	26
9	Laminar Flame Speeds in Degenerate Oxygen–Neon Mixtures. Astrophysical Journal, 2020, 891, 5.	1.6	3
10	CNO Cycle Burning in Ultra-low Metallicity Solar Mass Stars. Research Notes of the AAS, 2020, 4, 172.	0.3	1
11	Modules for Experiments in Stellar Astrophysics (MESA): Pulsating Variable Stars, Rotation, Convective Boundaries, and Energy Conservation. Astrophysical Journal, Supplement Series, 2019, 243, 10.	3.0	860
12	Quantifying How Density Gradients and Front Curvature Affect Carbon Detonation Strength during SNe Ia. Astrophysical Journal, 2019, 871, 154.	1.6	9
13	On the Structure, Magnetic Properties, and Infrared Spectra of Iron Pseudocarbynes in the Interstellar Medium. Astrophysical Journal, 2019, 879, 2.	1.6	11
14	Modules for Experiments in Stellar Astrophysics $\{mathtt\{M\}\}$ (mathtt $\{M\}$) (mathtt $\{$	3.0	1,182
15	The Impact of Nuclear Reaction Rate Uncertainties on the Evolution of Core-collapse Supernova Progenitors. Astrophysical Journal, Supplement Series, 2018, 234, 19.	3.0	38
16	On the Observability of Individual Population III Stars and Their Stellar-mass Black Hole Accretion Disks through Cluster Caustic Transits. Astrophysical Journal, Supplement Series, 2018, 234, 41.	3.0	66
17	The Impact of White Dwarf Luminosity Profiles on Oscillation Frequencies. Astrophysical Journal Letters, 2018, 867, L30.	3.0	22
18	Editorial: Data: Insights and Challenges in a Time of Abundance. Astrophysical Journal, Supplement Series, 2018, 236, 1.	3.0	4

#	Article	IF	Citations
19	Neutrinos from Beta Processes in a Presupernova: Probing the Isotopic Evolution of a Massive Star. Astrophysical Journal, 2017, 851, 6.	1.6	32
20	Observational Evidence for High Neutronization in Supernova Remnants: Implications for Type Ia Supernova Progenitors. Astrophysical Journal, 2017, 843, 35.	1.6	33
21	CONVECTIVE PROPERTIES OF ROTATING TWO-DIMENSIONAL CORE-COLLAPSE SUPERNOVA PROGENITORS. Astrophysical Journal, 2016, 822, 61.	1.6	38
22	ON MEASURING THE METALLICITY OF A TYPE IA SUPERNOVA'S PROGENITOR. Astrophysical Journal, 2016, 824, 59.	1.6	20
23	BAYESIAN ESTIMATION OF THERMONUCLEAR REACTION RATES. Astrophysical Journal, 2016, 831, 107.	1.6	43
24	ON VARIATIONS OF PRE-SUPERNOVA MODEL PROPERTIES. Astrophysical Journal, Supplement Series, 2016, 227, 22.	3.0	92
25	TURBULENT CHEMICAL DIFFUSION IN CONVECTIVELY BOUNDED CARBON FLAMES. Astrophysical Journal, 2016, 832, 71.	1.6	39
26	PROPERTIES OF CARBON–OXYGEN WHITE DWARFS FROM MONTE CARLO STELLAR MODELS. Astrophysical Journal, 2016, 823, 46.	1.6	38
27	A TRACER METHOD FOR COMPUTING TYPE IA SUPERNOVA YIELDS: BURNING MODEL CALIBRATION, RECONSTRUCTION OF THICKENED FLAMES, AND VERIFICATION FOR PLANAR DETONATIONS. Astrophysical Journal, Supplement Series, 2016, 225, 3.	3.0	36
28	THE THREE-DIMENSIONAL EVOLUTION TO CORE COLLAPSE OF A MASSIVE STAR. Astrophysical Journal Letters, 2015, 808, L21.	3.0	125
29	MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): BINARIES, PULSATIONS, AND EXPLOSIONS. Astrophysical Journal, Supplement Series, 2015, 220, 15.	3.0	1,990
30	Statistical methods for thermonuclear reaction rates and nucleosynthesis simulations. Journal of Physics G: Nuclear and Particle Physics, 2015, 42, 034007.	1.4	33
31	CONSTRAINTS ON EXPLOSIVE SILICON BURNING IN CORE-COLLAPSE SUPERNOVAE FROM MEASURED Ni/Fe RATIOS. Astrophysical Journal, 2015, 807, 110.	1.6	35
32	ON CARBON BURNING IN SUPER ASYMPTOTIC GIANT BRANCH STARS. Astrophysical Journal, 2015, 807, 184.	1.6	59
33	MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): PLANETS, OSCILLATIONS, ROTATION, AND MASSIVE STARS. Astrophysical Journal, Supplement Series, 2013, 208, 4.	3.0	2,251
34	STARLIB: A NEXT-GENERATION REACTION-RATE LIBRARY FOR NUCLEAR ASTROPHYSICS. Astrophysical Journal, Supplement Series, 2013, 207, 18.	3.0	148
35	ADVANCED BURNING STAGES AND FATE OF 8-10 <i>M</i> _{â~%} STARS. Astrophysical Journal, 2013, 772, 150.	1.6	155
36	THE $<$ sup $>$ 12 $<$ /sup $>$ C + $<$ sup $>$ 12 $<$ /sup $>$ C REACTION AND THE IMPACT ON NUCLEOSYNTHESIS IN MASSIVE STARS. Astrophysical Journal, 2013, 762, 31.	1.6	88

#	Article	IF	CITATIONS
37	ZERO IMPACT PARAMETER WHITE DWARF COLLISIONS IN FLASH. Astrophysical Journal, 2012, 759, 39.	1.6	33
38	The effect of $12C + 12C$ rate uncertainties on the evolution and nucleosynthesis of massive stars. Monthly Notices of the Royal Astronomical Society, 2012, 420, 3047-3070.	1.6	55
39	⁵⁶ Ni PRODUCTION IN DOUBLE-DEGENERATE WHITE DWARF COLLISIONS. Astrophysical Journal, 2010, 724, 111-125.	1.6	68
40	TRENDS IN ⁴⁴ Ti AND ⁵⁶ Ni FROM CORE-COLLAPSE SUPERNOVAE. Astrophysical Journal, Supplement Series, 2010, 191, 66-95.	3.0	92
41	EVALUATING SYSTEMATIC DEPENDENCIES OF TYPE Ia SUPERNOVAE: THE INFLUENCE OF PROGENITOR ²² Ne CONTENT ON DYNAMICS. Astrophysical Journal, 2009, 701, 1582-1604.	1.6	48
42	On Type Ia supernovae from the collisions of two white dwarfs. Monthly Notices of the Royal Astronomical Society: Letters, 2009, 399, L156-L159.	1.2	125
43	Proton-rich Nuclear Statistical Equilibrium. Astrophysical Journal, 2008, 685, L129-L132.	1.6	44
44	The Reduction of the Electron Abundance during the Preâ€explosion Simmering in White Dwarf Supernovae. Astrophysical Journal, 2008, 677, 160-168.	1.6	59
45	On Variations in the Peak Luminosity of Type Ia Supernovae. Astrophysical Journal, 2003, 590, L83-L86.	1.6	261
46	The Accuracy, Consistency, and Speed of an Electronâ€Positron Equation of State Based on Table Interpolation of the Helmholtz Free Energy. Astrophysical Journal, Supplement Series, 2000, 126, 501-516.	3.0	635
47	Physical Properties of Laminar Helium Deflagrations. Astrophysical Journal, 2000, 528, 913-945.	1.6	42
48	FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes. Astrophysical Journal, Supplement Series, 2000, 131, 273-334.	3.0	1,913
49	Integration of Nuclear Reaction Networks for Stellar Hydrodynamics. Astrophysical Journal, Supplement Series, 1999, 124, 241-263.	3.0	219
50	The Accuracy, Consistency, and Speed of Five Equations of State for Stellar Hydrodynamics. Astrophysical Journal, Supplement Series, 1999, 125, 277-294.	3.0	191
51	The Neutron Star and Black Hole Initial Mass Function. Astrophysical Journal, 1996, 457, 834.	1.6	300
52	The conductive propagation of nuclear flames. 2: Convectively bounded flames in C + O and O + NE + MG cores. Astrophysical Journal, 1994, 420, 348.	1.6	73
53	The conductive propagation of nuclear flames. I - Degenerate C + O and O + NE + MG white dwarfs. Astrophysical Journal, 1992, 396, 649.	1.6	270