
## Ravshan S Shamsiev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2621272/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | On the mechanism of catalytic conversion of fatty acids into hydrocarbons in the presence of palladium catalysts on alumina. Petroleum Chemistry, 2011, 51, 336-341.                                       | 1.4 | 55        |
| 2  | Norbornene, norbornadiene and their derivatives: promising semi-products for organic synthesis and production of polymeric materials. Russian Chemical Reviews, 2018, 87, 1169-1205.                       | 6.5 | 51        |
| 3  | The influence of metal and carrier natures on the effectiveness of catalysts of the deoxygenation of fatty acids into hydrocarbons. Russian Journal of Physical Chemistry A, 2012, 86, 1199-1203.          | 0.6 | 32        |
| 4  | Kinetics and mechanism of the deoxygenation of stearic acid in the presence of palladium catalysts on alumina. Kinetics and Catalysis, 2012, 53, 595-609.                                                  | 1.0 | 22        |
| 5  | Zinc(II) and cadmium(II) halide complexes with caffeine: Synthesis, X-ray crystal structure, cytotoxicity and genotoxicity studies. Inorganica Chimica Acta, 2019, 487, 184-200.                           | 2.4 | 22        |
| 6  | Catalytic methods for the manufacturing of high-production volume chemicals from vegetable oils and fats (review). Petroleum Chemistry, 2016, 56, 663-671.                                                 | 1.4 | 21        |
| 7  | Catalytic chemistry of preparation of hydrocarbon fuels from vegetable oils and fats. Catalysis in<br>Industry, 2012, 4, 209-214.                                                                          | 0.7 | 20        |
| 8  | Synthesis, X-ray crystal structure and cytotoxicity studies of zinc(II) and cadmium(II) iodide complexes with antipyrine. Polyhedron, 2015, 102, 152-162.                                                  | 2.2 | 19        |
| 9  | Adsorption of phenylacetylene and styrene on palladium surface: a DFT study. Journal of Molecular<br>Modeling, 2018, 24, 143.                                                                              | 1.8 | 15        |
| 10 | Hydride transfer mechanism in the catalytic allylation of norbornadiene with allyl formate. Russian<br>Chemical Bulletin, 2018, 67, 2234-2240.                                                             | 1.5 | 14        |
| 11 | Synthesis, X-ray crystal structure and cytotoxicity studies of lanthanide(III) iodide complexes with antipyrine. Polyhedron, 2012, 44, 124-132.                                                            | 2.2 | 12        |
| 12 | Quantum chemical study of the mechanism of catalytic [2+2+2] cycloaddition of acrylic acid esters to norbornadiene in the presence of nickel(0) complexes. Russian Chemical Bulletin, 2013, 62, 2301-2305. | 1.5 | 12        |
| 13 | Quantum chemical study of H2 adsorption on Pd21 cluster. Russian Chemical Bulletin, 2017, 66, 395-400.                                                                                                     | 1.5 | 12        |
| 14 | Specifics of the stearic acid deoxygenation reaction on a copper catalyst. Petroleum Chemistry, 2013, 53, 362-366.                                                                                         | 1.4 | 10        |
| 15 | Quantum chemical modeling of phenylacetylene and styrene adsorption over Pd21 cluster. Russian<br>Chemical Bulletin, 2017, 66, 401-408.                                                                    | 1.5 | 10        |
| 16 | Kinetics and mechanism of the production of higher olefins from stearic acid in the presence of an alumina-supported nickel sulfide catalyst. Kinetics and Catalysis, 2017, 58, 147-155.                   | 1.0 | 9         |
| 17 | Quantum-chemical study on the mechanism of catalytic dimerization of norbornadiene in the presence of hydride nickel(I) complex. Russian Journal of Organic Chemistry, 2013, 49, 345-349.                  | 0.8 | 8         |
| 18 | Study of the effect of the solvent nature on cis-trans isomerization in Bis(allyl)nickel by the density functional theory method. Russian Journal of Inorganic Chemistry, 2013, 58, 1506-1510.             | 1.3 | 8         |

**RAVSHAN S SHAMSIEV** 

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Revealing the Influence of Silver in Ni–Ag Catalysts on the Selectivity of Higher Olefin Synthesis from<br>Stearic Acid. Russian Journal of Physical Chemistry A, 2018, 92, 57-65.                               | 0.6 | 8         |
| 20 | Cycloaddition of electron-deficient olefins to norbornadiene in the presence of nickel bisphosphine systems. Russian Chemical Bulletin, 2013, 62, 2385-2388.                                                     | 1.5 | 7         |
| 21 | Problems of the stereoselectivity in the norbornadiene [2+2]-cyclodimerization reactions catalyzed by hydride nickel(i) complexes. Theoretical aspects. Russian Chemical Bulletin, 2013, 62, 1553-1557.          | 1.5 | 7         |
| 22 | DFT Modeling of Mechanism of Hydrogenation of Phenylacetylene into Styrene on a Pd(111) Surface.<br>Kinetics and Catalysis, 2018, 59, 333-338.                                                                   | 1.0 | 7         |
| 23 | Spectral and structural properties of carotenoids - DFT and thermochemical calculations. Journal of<br>Molecular Structure, 2019, 1197, 583-593.                                                                 | 3.6 | 7         |
| 24 | Isotope Effect in Catalytic Hydroallylation of Norbornadiene by Allyl Formate. Kinetics and Catalysis,<br>2019, 60, 245-249.                                                                                     | 1.0 | 7         |
| 25 | Quantum-Chemical Calculations of Palladium(II) Complexes and Clusters. Russian Journal of<br>Coordination Chemistry/Koordinatsionnaya Khimiya, 2002, 28, 104-109.                                                | 1.0 | 6         |
| 26 | Theoretical modeling of the interaction of phenylacetylene and styrene molecules with Pd{111}.<br>Russian Chemical Bulletin, 2017, 66, 2234-2240.                                                                | 1.5 | 6         |
| 27 | DFT and experimental study of nitrosyl carboxylate palladium clusters Pd4(NO)2(RCO2)6 as catalysts for aerobic oxidation of alcohols. Journal of Molecular Structure, 2018, 1173, 974-982.                       | 3.6 | 6         |
| 28 | Theoretical Study of the Mechanism of Propionic Acid Deoxygenation on the Palladium Surface.<br>Kinetics and Catalysis, 2019, 60, 627-634.                                                                       | 1.0 | 6         |
| 29 | Supported palladium nanomaterials as catalysts for petroleum chemistry: 1. Specifics of palladium diacetate reduction with hydrogen on silica gel in catalyst synthesis. Petroleum Chemistry, 2014, 54, 105-110. | 1.4 | 5         |
| 30 | Interaction of norbornadiene with allyl acetate in the presence of NiO complexes: a DFT modeling.<br>Russian Chemical Bulletin, 2020, 69, 653-659.                                                               | 1.5 | 5         |
| 31 | Kinetic model of ethylene oxidation by p-benzoquinone in solutions of cationic palladium(ii)<br>complexes in a binary acetonitrile—water solvent. Russian Chemical Bulletin, 2019, 68, 1366-1375.                | 1.5 | 4         |
| 32 | Palladium Nitrosyl Carboxylate Complexes as Catalysts for Câ´'H/Câ´'H Oxidative Coupling of Arenes: An<br>Experimental and DFT Study. ChemistrySelect, 2020, 5, 1080-1087.                                       | 1.5 | 4         |
| 33 | Quantum chemical modeling of the cis-trans isomerization of the allyl ligand in Ni(Î-3-C3H5)2 in the presence of norbornadiene. Russian Chemical Bulletin, 2013, 62, 1549-1552.                                  | 1.5 | 2         |
| 34 | Quantum chemical simulation of the C-C bond cleavage in a propionic acid molecule on small palladium clusters. Russian Chemical Bulletin, 2014, 63, 2585-2590.                                                   | 1.5 | 2         |
| 35 | IR spectroscopy as a source of data on bond strengths. Journal of Molecular Structure, 2018, 1154, 261-271.                                                                                                      | 3.6 | 2         |
| 36 | Quantum chemical analysis of mechanisms of phenylacetylene and styrene hydrogenation to ethylbenzene on the Pd{111} surface. Russian Chemical Bulletin, 2018, 67, 419-424.                                       | 1.5 | 2         |

| #  | Article                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Palladium Nitrosyl Complexes as Highly Versatile Catalysts for Câ^'H/Câ^'H Oxidative Coupling of Arenes:<br>Application Area and Insight into Mechanism. ChemistrySelect, 2021, 6, 1795-1803.                                                                                 | 1.5 | 2         |
| 38 | Copper(II) perchlorate complexes with antipyrine: synthesis, structure, cytotoxicity and DFT calculations. Mendeleev Communications, 2022, 32, 123-125.                                                                                                                       | 1.6 | 2         |
| 39 | Synthesis, X-ray crystal structure, and properties of antipyrinium perchlorates,<br>hexakis(antipyrine)thulium- and hexakis(antipyrine)ytterbium perchlorates. Quantum-chemical studies<br>of ligands protonation. Russian Journal of Inorganic Chemistry, 2014, 59, 455-468. | 1.3 | 1         |
| 40 | Self association of $\hat{l}\pm$ -tocopherol in solutions. Infrared absorption and theoretical study. Journal of Molecular Structure, 2016, 1109, 74-81.                                                                                                                      | 3.6 | 1         |
| 41 | Theoretical modeling of the mechanism of aniline oxidation by singlet O2. Russian Chemical Bulletin, 2018, 67, 1567-1572.                                                                                                                                                     | 1.5 | 1         |
| 42 | Theoretical modeling of mechanisms of phenylacetylene and styrene hydrogenation on the Pd(100) surface. Russian Chemical Bulletin, 2019, 68, 1656-1661.                                                                                                                       | 1.5 | 1         |
| 43 | Kinetics and Mechanism of Thermal Decomposition of Bis(η3-Allyl)Nickel Complexes. Kinetics and Catalysis, 2019, 60, 113-117.                                                                                                                                                  | 1.0 | 1         |
| 44 | Mechanism of CO oxidation by oxygen in the presence of palladium(ii) bromide complexes: a quantum<br>chemical modeling. Russian Chemical Bulletin, 2020, 69, 647-652.                                                                                                         | 1.5 | 1         |
| 45 | Estimation of conjugated C = C bonds effective number and conjugation energy of carotenoids. Journal of Molecular Modeling, 2021, 27, 281.                                                                                                                                    | 1.8 | 0         |