Wen Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2621007/publications.pdf

Version: 2024-02-01

516710 552781 32 746 16 26 h-index citations g-index papers 32 32 32 482 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Friction Stir Processing of Magnesium Alloys: A Review. Acta Metallurgica Sinica (English Letters), 2020, 33, 43-57.	2.9	138
2	Microstructure and mechanical properties of dissimilar friction stir welded type 304 austenitic stainless steel to Q235 low carbon steel. Materials Characterization, 2019, 155, 109803.	4.4	49
3	Effect of multi-pass friction stir processing on the microstructure evolution and corrosion behavior of ZrO2/AZ31 magnesium matrix composite. Journal of Materials Research and Technology, 2022, 18, 1166-1179.	5 . 8	49
4	Effects of grain size and texture on stress corrosion cracking of friction stir processed AZ80 magnesium alloy. Engineering Failure Analysis, 2018, 92, 392-404.	4.0	45
5	Microstructure and mechanical properties of AE42 rare earth-containing magnesium alloy prepared by friction stir processing. Materials Characterization, 2019, 150, 52-61.	4.4	34
6	Superplastic deformation behavior of fine-grained AZ80 magnesium alloy prepared by friction stir processing. Journal of Materials Research and Technology, 2020, 9, 5252-5263.	5.8	33
7	Corrosion fatigue behavior of friction stir processed interstitial free steel. Journal of Materials Science and Technology, 2018, 34, 148-156.	10.7	31
8	Intermetallic compounds: Formation mechanism and effects on the mechanical properties of friction stir lap welded dissimilar joints of magnesium and aluminum alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 802, 140554.	5 . 6	30
9	Relationship between microstructure and mechanical properties of friction stir processed AISI 316L steel produced by selective laser melting. Materials Characterization, 2020, 163, 110283.	4.4	29
10	Effect of Friction Stir Processing on Microstructure and Mechanical Properties of AlSi10Mg Aluminum Alloy Produced by Selective Laser Melting. Jom, 2019, 71, 1737-1747.	1.9	27
11	Mg/ZrO2 Metal Matrix Nanocomposites Fabricated by Friction Stir Processing: Microstructure, Mechanical Properties, and Corrosion Behavior. Frontiers in Bioengineering and Biotechnology, 2021, 9, 605171.	4.1	26
12	Modification of cold-sprayed high-entropy alloy particles reinforced aluminum matrix composites via friction stir processing. Journal of Alloys and Compounds, 2022, 907, 164426.	5 . 5	26
13	Friction stir processing induced elctrochemical performance improvement of commercial Al for Al-air battery. Electrochimica Acta, 2020, 354, 136635.	5. 2	25
14	Underwater friction stir welding of ultrafine grained 2017 aluminum alloy. Journal of Central South University, 2012, 19, 2081-2085.	3.0	24
15	Effect of the rotation rate on the low-cycle fatigue behavior of friction-stir welded AZ31 magnesium alloy. Engineering Fracture Mechanics, 2020, 228, 106925.	4.3	23
16	Microstructure and nanomechanical behavior of friction stir welded joint of 7055 aluminum alloy. Journal of Manufacturing Processes, 2021, 61, 311-321.	5.9	18
17	Microstructure and mechanical properties of magnesium–lithium alloy prepared by friction stir processing. Rare Metals, 2021, 40, 2552-2559.	7.1	16
18	Microstructure and Mechanical Properties of Low-Carbon Q235 Steel Welded Using Friction Stir Welding. Acta Metallurgica Sinica (English Letters), 2020, 33, 1556-1570.	2.9	13

#	Article	IF	CITATIONS
19	Effects of interlayer metal on microstructures and mechanical properties of friction stir lap welded dissimilar joints of magnesium and aluminum alloys. Journal of Materials Processing Technology, 2022, 299, 117362.	6.3	13
20	Mechanical and corrosion properties of low-carbon steel prepared by friction stir processing. International Journal of Minerals, Metallurgy and Materials, 2019, 26, 202-209.	4.9	12
21	Microstructure and mechanical properties of friction stir welded joint of TRIP steel. Journal of Manufacturing Processes, 2020, 56, 623-634.	5.9	12
22	Effects of Ni2+ on aluminum hydroxide scale formation and transformation on a simulated drinking water distribution system. Chemosphere, 2014, 107, 211-217.	8.2	11
23	Effect of Travel Speed on the Stress Corrosion Behavior of Friction Stir Welded 2024-T4 Aluminum Alloy. Journal of Materials Engineering and Performance, 2016, 25, 1820-1828.	2.5	10
24	Microstructural evolution and corrosion behavior of friction stir processed fineâ€grained AZ80 Mg alloy. Materials and Corrosion - Werkstoffe Und Korrosion, 2020, 71, 93-108.	1.5	10
25	Microstructure, Mechanical Properties, and Corrosion Behavior of Mg–Al–Ca Alloy Prepared by Friction Stir Processing. Acta Metallurgica Sinica (English Letters), 2022, 35, 703-713.	2.9	10
26	A modified parallel constitutive model for elevated temperature flow behavior of Ti-6Al-4V alloy based on multiple regression. International Journal of Materials Research, 2017, 108, 527-541.	0.3	9
27	Enhanced Mechanical Properties of Pure Zirconium via Friction Stir Processing. Acta Metallurgica Sinica (English Letters), 2020, 33, 147-153.	2.9	7
28	Microstructure and mechanical properties of friction stir lap welded dissimilar zirconium-steel joint. Journal of Materials Research and Technology, 2020, 9, 15087-15093.	5.8	7
29	Experimental investigation on fatigue crack initiation and propagation mechanism of friction stir lap welded dissimilar joints of magnesium and aluminum alloys. Materials Characterization, 2021, 177, 111176.	4.4	7
30	Corrosion properties of low carbon steel prepared by submerged friction stir processing. Materials and Corrosion - Werkstoffe Und Korrosion, 2018, 69, 1077-1083.	1.5	1
31	Effect of the microstructure on the corrosion behavior of dissimilar friction stir-welded 304 austenitic stainless steel and Q235 low-carbon steel joints. Materials Research Express, 2022, 9, 076508.	1.6	1
32	Effect of heterogeneous Ti layers on mechanical properties of Cu/Ti laminated sheets prepared by accumulative roll bonding. Physica Status Solidi (A) Applications and Materials Science, 0, , .	1.8	0