Ji Mun Yoo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2620874/publications.pdf Version: 2024-02-01

		430442	500791
29	2,513	18	28
papers	citations	h-index	g-index
21	21	21	4101
51	51	51	4101
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Highly Durable and Active PtFe Nanocatalyst for Electrochemical Oxygen Reduction Reaction. Journal of the American Chemical Society, 2015, 137, 15478-15485.	6.6	517
2	Large-Scale Synthesis of Carbon-Shell-Coated FeP Nanoparticles for Robust Hydrogen Evolution Reaction Electrocatalyst. Journal of the American Chemical Society, 2017, 139, 6669-6674.	6.6	451
3	Design Principle of Fe–N–C Electrocatalysts: How to Optimize Multimodal Porous Structures?. Journal of the American Chemical Society, 2019, 141, 2035-2045.	6.6	383
4	Highly Durable and Active Ptâ€Based Nanoscale Design forÂFuelâ€Cell Oxygenâ€Reduction Electrocatalysts. Advanced Materials, 2018, 30, e1704123.	11.1	208
5	Direct Synthesis of Intermetallic Platinum–Alloy Nanoparticles Highly Loaded on Carbon Supports for Efficient Electrocatalysis. Journal of the American Chemical Society, 2020, 142, 14190-14200.	6.6	160
6	Carbon Shell on Active Nanocatalyst for Stable Electrocatalysis. Accounts of Chemical Research, 2022, 55, 1278-1289.	7.6	86
7	Epitaxially Strained CeO ₂ /Mn ₃ O ₄ Nanocrystals as an Enhanced Antioxidant for Radioprotection. Advanced Materials, 2020, 32, e2001566.	11.1	79
8	Coffee Waste-Derived Hierarchical Porous Carbon as a Highly Active and Durable Electrocatalyst for Electrochemical Energy Applications. ACS Applied Materials & Interfaces, 2017, 9, 41303-41313.	4.0	74
9	Development of Highly Stable and Mass Transferâ€Enhanced Cathode Catalysts: Supportâ€Free Electrospun Intermetallic FePt Nanotubes for Polymer Electrolyte Membrane Fuel Cells. Advanced Energy Materials, 2015, 5, 1402093.	10.2	70
10	Design and synthesis of multigrain nanocrystals via geometric misfit strain. Nature, 2020, 577, 359-363.	13.7	59
11	Low-Temperature and Gram-Scale Synthesis of Two-Dimensional Fe–N–C Carbon Sheets for Robust Electrochemical Oxygen Reduction Reaction. Chemistry of Materials, 2017, 29, 2890-2898.	3.2	55
12	Facile and Gram-scale Synthesis of Metal-free Catalysts: Toward Realistic Applications for Fuel Cells. Scientific Reports, 2015, 5, 8376.	1.6	54
13	Scaffold-Like Titanium Nitride Nanotubes with a Highly Conductive Porous Architecture as a Nanoparticle Catalyst Support for Oxygen Reduction. ACS Catalysis, 2016, 6, 3914-3920.	5.5	51
14	Activity–Stability Relationship in Au@Pt Nanoparticles for Electrocatalysis. ACS Energy Letters, 2020, 5, 2827-2834.	8.8	49
15	Electrochemically Synthesized Nanoporous Molybdenum Carbide as a Durable Electrocatalyst for Hydrogen Evolution Reaction. Advanced Science, 2018, 5, 1700601.	5.6	47
16	Single-atom M–N–C catalysts for oxygen reduction electrocatalysis. Trends in Chemistry, 2021, 3, 779-794.	4.4	37
17	Structural Insights into Multiâ€Metal Spinel Oxide Nanoparticles for Boosting Oxygen Reduction Electrocatalysis. Advanced Materials, 2022, 34, e2107868.	11.1	30
18	Rational Generation of Feâ^'N x Active Sites in Feâ^'Nâ^'C Electrocatalysts Facilitated by Feâ^'N Coordinated Precursors for the Oxygen Reduction Reaction. ChemCatChem, 2019, 11, 5982-5988.	1.8	19

Jι Μυν Υοο

#	Article	IF	CITATIONS
19	Edgeâ€Terminated MoS ₂ Nanoassembled Electrocatalyst via In Situ Hybridization with 3D Carbon Network. Small, 2018, 14, e1802191.	5.2	15
20	Functional link between surface low-coordination sites and the electrochemical durability of Pt nanoparticles. Journal of Power Sources, 2016, 334, 52-57.	4.0	12
21	Recent progress in in situ/operando analysis tools for oxygen electrocatalysis. Journal Physics D: Applied Physics, 2021, 54, 173001.	1.3	11
22	Lithium manganese phosphate-carbon composite as a highly active and durable electrocatalyst for oxygen reduction reaction. Electrochimica Acta, 2017, 245, 219-226.	2.6	10
23	Effect of different surface functional groups on carbon supports toward methanol electro-oxidation of Pt nanoparticles. Journal of Electroanalytical Chemistry, 2020, 875, 113931.	1.9	9
24	High-Density Single-Layer Coating of Gold Nanoparticles onto Multiple Substrates by Using an Intrinsically Disordered Protein of α-Synuclein for Nanoapplications. ACS Applied Materials & Interfaces, 2017, 9, 8519-8532.	4.0	8
25	CO electro-oxidation reaction on Pt nanoparticles: Understanding peak multiplicity through thiol derivative molecule adsorption. Catalysis Today, 2017, 293-294, 2-7.	2.2	5
26	Electrocatalysts: Highly Durable and Active Pt-Based Nanoscale Design forÂFuel-Cell Oxygen-Reduction Electrocatalysts (Adv. Mater. 42/2018). Advanced Materials, 2018, 30, 1870316.	11.1	4
27	Facet-Defined Strain-Free Spinel Oxide for Oxygen Reduction. Nano Letters, 2022, 22, 3636-3644.	4.5	3
28	Electrocatalysis: Electrochemically Synthesized Nanoporous Molybdenum Carbide as a Durable Electrocatalyst for Hydrogen Evolution Reaction (Adv. Sci. 1/2018). Advanced Science, 2018, 5, 1870002.	5.6	0
29	Structural Insights into Multiâ€Metal Spinel Oxide Nanoparticles for Boosting Oxygen Reduction	11.1	0