Anke Neumann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2620849/publications.pdf

Version: 2024-02-01

393982 676716 1,420 22 19 22 h-index citations g-index papers 23 23 23 1299 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effect of Structural Fe Reduction on Water Sorption by Swelling and Non-Swelling Clay Minerals. Minerals (Basel, Switzerland), 2022, 12, 453.	0.8	3
2	Fe(II) Induced Reduction of Incorporated U(VI) to U(V) in Goethite. Environmental Science & amp; Technology, 2021, 55, $16445-16454$.	4.6	11
3	Oxidative Degradation of Organic Contaminants by FeS in the Presence of O ₂ . Environmental Science & Description of the Presence of O ₂ .	4.6	76
4	A Closer Look at Fe(II) Passivation of Goethite. ACS Earth and Space Chemistry, 2019, 3, 2717-2725.	1.2	22
5	Abiotic Degradation of Chlorinated Solvents by Clay Minerals and Fe(II): Evidence for Reactive Mineral Intermediates. Environmental Science & Environm	4.6	31
6	pH-Dependent Structure–Activity Relationship of Polyaniline-Intercalated FeOCl for Heterogeneous Fenton Reactions. ACS Omega, 2019, 4, 21945-21953.	1.6	20
7	The Role of Defects in Fe(II)–Goethite Electron Transfer. Environmental Science & Emp; Technology, 2018, 52, 2751-2759.	4.6	76
8	Reduction of PCE and TCE by magnetite revisited. Environmental Sciences: Processes and Impacts, 2018, 20, 1340-1349.	1.7	29
9	Fe(II)–Fe(III) Electron Transfer in a Clay Mineral with Low Fe Content. ACS Earth and Space Chemistry, 2017, 1, 197-208.	1.2	57
10	Emerging investigator series: As(<scp>v</scp>) in magnetite: incorporation and redistribution. Environmental Sciences: Processes and Impacts, 2017, 19, 1208-1219.	1.7	8
11	Tc(VII) and Cr(VI) Interaction with Naturally Reduced Ferruginous Smectite from a Redox Transition Zone. Environmental Science & Environmental Science	4.6	38
12	Atom Exchange between Aqueous Fe(II) and Structural Fe in Clay Minerals. Environmental Science & Environmental	4.6	46
13	Fe(II)-Catalyzed Recrystallization of Goethite Revisited. Environmental Science & Environmental Scienc	4.6	160
14	Spectroscopic Evidence for Fe(II)–Fe(III) Electron Transfer at Clay Mineral Edge and Basal Sites. Environmental Science & Technology, 2013, 47, 6969-6977.	4.6	137
15	Arsenic Removal with Composite Iron Matrix Filters in Bangladesh: A Field and Laboratory Study. Environmental Science & Environmental Science & Enviro	4.6	164
16	Electron Exchange and Conduction in Nontronite from First-Principles. Journal of Physical Chemistry C, 2013, 117, 2032-2040.	1.5	43
17	Redox Properties of Structural Fe in Smectite Clay Minerals. ACS Symposium Series, 2011, , 361-379.	0.5	22
18	Evaluation of redox-active iron sites in smectites using middle and near infrared spectroscopy. Geochimica Et Cosmochimica Acta, 2011, 75, 2336-2355.	1.6	104

#	Article	IF	CITATION
19	Reduction of Polychlorinated Ethanes and Carbon Tetrachloride by Structural Fe(II) in Smectites. Environmental Science & Envir	4.6	89
20	Substituent Effects on Nitrogen Isotope Fractionation During Abiotic Reduction of Nitroaromatic Compounds. Environmental Science & Environmental Scien	4.6	59
21	Assessing the Redox Reactivity of Structural Iron in Smectites Using Nitroaromatic Compounds As Kinetic Probes. Environmental Science & Environmental	4.6	91
22	Reduction of Nitroaromatic Compounds by Fe(II) Species Associated with Iron-Rich Smectites. Environmental Science & Dr. Technology, 2006, 40, 235-242.	4.6	134