Yeon Sun Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2620647/publications.pdf

Version: 2024-02-01

516710 580821 25 38 692 16 h-index citations g-index papers 38 38 38 836 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Regulation of mitochondrial fission by GIPC-mediated Drp1 retrograde transport. Molecular Biology of the Cell, 2022, 33, mbcE21060286.	2.1	10
2	Time-Dependent Changes in Protein Composition of Medial Prefrontal Cortex in Rats with Neuropathic Pain. International Journal of Molecular Sciences, 2022, 23, 955.	4.1	6
3	\hat{I}^2 IV-spectrin as a stalk cell-intrinsic regulator of VEGF signaling. Nature Communications, 2022, 13, 1326.	12.8	11
4	Preclinical Assessment of the Analgesic Pharmacology of NKTR-181 in Rodents. Cellular and Molecular Neurobiology, 2021, 41, 949-960.	3.3	6
5	Multifunctional Enkephalin Analogs with a New Biological Profile: MOR/DOR Agonism and KOR Antagonism. Biomedicines, 2021, 9, 625.	3. 2	5
6	C-terminal modified Enkephalin-like tetrapeptides with enhanced affinities at the kappa opioid receptor and monoamine transporters. Bioorganic and Medicinal Chemistry, 2021, 51, 116509.	3.0	1
7	Gramâ€Scale Preparation of Câ€Terminalâ€Modified Enkephalin Analogues by Typical Liquidâ€Phase Peptide Synthesis. Current Protocols in Protein Science, 2019, 98, e97.	2.8	5
8	Brain Delivery of a Potent Opioid Receptor Agonist, Biphalin during Ischemic Stroke: Role of Organic Anion Transporting Polypeptide (OATP). Pharmaceutics, 2019, 11, 467.	4.5	27
9	Kappa Opioid Receptor Distribution and Function in Primary Afferents. Neuron, 2018, 99, 1274-1288.e6.	8.1	100
10	Cyclic biphalin analogues with a novel linker lead to potent agonist activities at mu, delta, and kappa opioid receptors. Bioorganic and Medicinal Chemistry, 2018, 26, 3664-3667.	3.0	6
11	Recent Advances in the Realm of Allosteric Modulators for Opioid Receptors for Future Therapeutics. ACS Chemical Neuroscience, 2017, 8, 1147-1158.	3 . 5	37
12	Enkephalin-Fentanyl Multifunctional Opioids as Potential Neuroprotectants for Ischemic Stroke Treatment. Current Pharmaceutical Design, 2017, 22, 6459-6468.	1.9	19
13	Various modifications of the amphipathic dynorphin <scp>A</scp> pharmacophore for rat brain bradykinin receptors. Chemical Biology and Drug Design, 2016, 88, 615-619.	3.2	2
14	Cyclic non-opioid dynorphin A analogues for the bradykinin receptors. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 5513-5516.	2.2	5
15	Discovery of Stable Non-opioid Dynorphin A Analogues Interacting at the Bradykinin Receptors for the Treatment of Neuropathic Pain. ACS Chemical Neuroscience, 2016, 7, 1746-1752.	3.5	7
16	Dynorphin A analogs for the treatment of chronic neuropathic pain. Future Medicinal Chemistry, 2016, 8, 165-177.	2.3	17
17	Structure–Activity Relationships of [des-Arg ⁷]Dynorphin A Analogues at the κ Opioid Receptor. Journal of Medicinal Chemistry, 2016, 59, 10291-10298.	6.4	11
18	A single diamagnetic catalyCEST MRI contrast agent that detects cathepsin B enzyme activity by using a ratio of two CEST signals. Contrast Media and Molecular Imaging, 2016, 11, 130-138.	0.8	32

#	Article	IF	Citations
19	Cyclic Opioid Peptides. Current Medicinal Chemistry, 2016, 23, 1288-1303.	2.4	36
20	Biphalin: The Foundation of Bivalent Ligands. Current Medicinal Chemistry, 2016, 23, 3267-3284.	2.4	13
21	Design, synthesis, and biological evaluation of a series of bifunctional ligands of opioids/SSRIs. Bioorganic and Medicinal Chemistry, 2015, 23, 1251-1259.	3.0	4
22	Modification of amphipathic non-opioid dynorphin A analogues for rat brain bradykinin receptors. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 30-33.	2.2	11
23	Blockade of non-opioid excitatory effects of spinal Dynorphin A at bradykinin receptors. Receptors & Clinical Investigation, 2015, 2, .	0.9	2
24	Synthesis and evaluation of bivalent ligands for binding to the human melanocortin-4 receptor. Bioorganic and Medicinal Chemistry, 2014, 22, 6360-6365.	3.0	16
25	Structure–activity relationships of non-opioid [des-Arg7]-dynorphin A analogues for bradykinin receptors. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4976-4979.	2.2	11
26	Neuropathic plasticity in the opioid and non-opioid actions of dynorphin A fragments and their interactions with bradykinin B2 receptors on neuronal activity in the rat spinal cord. Neuropharmacology, 2014, 85, 375-383.	4.1	27
27	Discovery of Amphipathic Dynorphin A Analogues to Inhibit the Neuroexcitatory Effects of Dynorphin A through Bradykinin Receptors in the Spinal Cord. Journal of the American Chemical Society, 2014, 136, 6608-6616.	13.7	27
28	Chiral Effect of a Phe Residue in Position 3 of the Dmt ¹ - <scp>I</scp> (or) Tj ETQq0 0 0 rgBT /Overloo	ck 10 Tf 50 2.8	0 387 Td (<so< td=""></so<>
	Letters, 2013, 4, 656-659.		
29	TY032, a potent opioid agonist/neurokinin 1 antagonist produces analgesia without motor impairment or sedation. FASEB Journal, 2013, 27, 887.3.	0.5	O
30	High Affinity Binding of Dynorphin Aâ€(2–13) at the Bradykininâ€2 Receptor. FASEB Journal, 2012, 26, 836.2.	0.5	0
31	Development of Potent \hat{l} and \hat{l} Opioid Agonists with High Lipophilicity. Journal of Medicinal Chemistry, 2011, 54, 382-386.	6.4	48
32	Design and synthesis of trivalent ligands targeting opioid, cholecystokinin, and melanocortin receptors for the treatment of pain. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 4080-4084.	2.2	19
33	Opioid and melanocortin receptors: Do they have overlapping pharmacophores?. Biopolymers, 2008, 90, 433-438.	2.4	10
34	Development of Novel Enkephalin Analogues that Have Enhanced Opioid Activities at Both \hat{l} 4 and \hat{l} 7 Opioid Receptors. Journal of Medicinal Chemistry, 2007, 50, 5528-5532.	6.4	41
35	Partial Retroâ^'Inverso, Retro, and Inverso Modifications of Hydrazide Linked Bifunctional Peptides for Opioid and Cholecystokinin (CCK) Receptors. Journal of Medicinal Chemistry, 2007, 50, 165-168.	6.4	29
36	Understanding the structural requirements of 4-anilidopiperidine analogues for biological activities at \hat{l}^4 and \hat{l}' opioid receptors. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 2161-2165.	2.2	26

YEON SUN LEE

#	Article	IF	CITATION
37	New paradigms and tools in drug design for pain and addiction. AAPS Journal, 2006, 8, E450-E460.	4.4	23
38	Design and Synthesis of Novel Hydrazide-Linked Bifunctional Peptides as $\hat{l}'\hat{l}^1/4$ Opioid Receptor Agonists and CCK-1/CCK-2 Receptor Antagonists. Journal of Medicinal Chemistry, 2006, 49, 1773-1780.	6.4	39