Roland Wiesendanger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2620617/publications.pdf

Version: 2024-02-01

640 papers 30,111 citations

83 h-index 148 g-index

674 all docs

674 docs citations

times ranked

674

15096 citing authors

#	Article	IF	CITATIONS
1	Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nature Physics, 2011, 7, 713-718.	6.5	1,521
2	Writing and Deleting Single Magnetic Skyrmions. Science, 2013, 341, 636-639.	6.0	1,217
3	Direct Observation of Internal Spin Structure of Magnetic Vortex Cores. Science, 2002, 298, 577-580.	6.0	841
4	Chiral magnetic order at surfaces driven by inversion asymmetry. Nature, 2007, 447, 190-193.	13.7	823
5	Spin mapping at the nanoscale and atomic scale. Reviews of Modern Physics, 2009, 81, 1495-1550.	16.4	599
6	Observation of vacuum tunneling of spin-polarized electrons with the scanning tunneling microscope. Physical Review Letters, 1990, 65, 247-250.	2.9	541
7	Nanoscale magnetic skyrmions in metallic films and multilayers: a new twist for spintronics. Nature Reviews Materials, 2016, 1 , .	23.3	488
8	Field-Dependent Size and Shape of Single Magnetic Skyrmions. Physical Review Letters, 2015, 114, 177203.	2.9	423
9	Realizing All-Spin–Based Logic Operations Atom by Atom. Science, 2011, 332, 1062-1064.	6.0	356
10	Observation of magnetic forces by the atomic force microscope. Journal of Applied Physics, 1987, 62, 4293-4295.	1.1	334
11	Real-Space Imaging of Two-Dimensional Antiferromagnetism on the Atomic Scale. Science, 2000, 288, 1805-1808.	6.0	334
12	Revealing Magnetic Interactions from Single-Atom Magnetization Curves. Science, 2008, 320, 82-86.	6.0	307
13	Electric-field-driven switching of individual magnetic skyrmions. Nature Nanotechnology, 2017, 12, 123-126.	15.6	297
14	Design of the Local Spin Polarization at the Organic-Ferromagnetic Interface. Physical Review Letters, 2010, 105, 066601.	2.9	284
15	Quantitative analysis of the frictional properties of solid materials at low loads. I. Carbon compounds. Physical Review B, 1997, 56, 6987-6996.	1.1	266
16	The properties of isolated chiral skyrmions in thin magnetic films. New Journal of Physics, 2016, 18, 065003.	1.2	260
17	Spin- and Energy-Dependent Tunneling through a Single Molecule with Intramolecular Spatial Review Letters, 2010, 105, 047204.	2.9	257
18	Spin-Polarized Scanning Tunneling Microscopy with Antiferromagnetic Probe Tips. Physical Review Letters, 2002, 88, 057201.	2.9	240

#	Article	IF	CITATIONS
19	Atomic-Scale Spin Spiral with a Unique Rotational Sense: Mn Monolayer on W(001). Physical Review Letters, 2008, 101, 027201.	2.9	238
20	Toward tailoring Majorana bound states in artificially constructed magnetic atom chains on elemental superconductors. Science Advances, 2018, 4, eaar5251.	4.7	233
21	Magnetic exchange force microscopy with atomic resolution. Nature, 2007, 446, 522-525.	13.7	228
22	Spin-Polarized Vacuum Tunneling into the Exchange-Split Surface State of Gd(0001). Physical Review Letters, 1998, 81, 4256-4259.	2.9	221
23	Local electronic signatures of impurity states in graphene. Physical Review B, 2007, 75, .	1.1	216
24	Real-Space Observation of Dipolar Antiferromagnetism in Magnetic Nanowires by Spin-Polarized Scanning Tunneling Spectroscopy. Physical Review Letters, 2000, 84, 5212-5215.	2.9	209
25	Strength and directionality of surface Ruderman–Kittel–Kasuya–Yosida interactionÂmapped on the atomic scale. Nature Physics, 2010, 6, 187-191.	6.5	207
26	Atom-by-atom engineering and magnetometry of tailored nanomagnets. Nature Physics, 2012, 8, 497-503.	6.5	201
27	Current-Driven Spin Dynamics of Artificially Constructed Quantum Magnets. Science, 2013, 339, 55-59.	6.0	197
28	Atom-specific spin mapping and buried topological states in a homologous series of topological insulators. Nature Communications, 2012, 3, 635.	5.8	192
29	Topographic and Magnetic-Sensitive Scanning Tunneling Microscope Study of Magnetite. Science, 1992, 255, 583-586.	6.0	185
30	Spin-Polarized Scanning Tunneling Spectroscopy of Nanoscale Cobalt Islands on Cu(111). Physical Review Letters, 2004, 92, 057202.	2.9	184
31	Electrical detection of magnetic skyrmions by tunnelling non-collinear magnetoresistance. Nature Nanotechnology, 2015, 10, 1039-1042.	15.6	179
32	Adatoms and Clusters of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mn>3</mml:mn> <mml:mi>d</mml:mi></mml:math> Transition Metals on Graphene: Electronic and Magnetic Configurations. Physical Review Letters, 2013, 110, 136804.	2.9	159
33	Current-Induced Magnetization Switching with a Spin-Polarized Scanning Tunneling Microscope. Science, 2007, 317, 1537-1540.	6.0	151
34	Information Transfer by Vector Spin Chirality in Finite Magnetic Chains. Physical Review Letters, 2012, 108, 197204.	2.9	151
35	Atomic-Scale Magnetic Domain Walls in Quasi-One-Dimensional Fe Nanostripes. Physical Review Letters, 2001, 87, 127201.	2.9	148
36	Measurement of three-dimensional force fields with atomic resolution using dynamic force spectroscopy. Applied Physics Letters, 2002, 81, 4428-4430.	1.5	148

#	Article	IF	Citations
37	Quantitative analysis of lateral force microscopy experiments. Review of Scientific Instruments, 1996, 67, 2560-2567.	0.6	147
38	In-Plane Magnetic Anisotropy of Fe Atoms on <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>Bi</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mibinimi> (<mml:mn) 0="" 10="" 50="" 687="" etqq0="" overlock="" rgbt="" td="" td<="" tf="" tj=""><td>>Ses∮mml (stretchy=</td><td>:miɪૠamml:mn :"false">)</td></mml:mn)></mml:mibinimi></mml:msub></mml:math>	>S e s∮mml (stretchy=	:miɪૠamml:mn :"false">)
39	Atomic-scale magnetism of cobalt-intercalated graphene. Physical Review B, 2013, 87, .	1.1	138
40	Calculation of the frequency shift in dynamic force microscopy. Applied Surface Science, 1999, 140, 344-351.	3.1	137
41	Itinerant Nature of Atom-Magnetization Excitation by Tunneling Electrons. Physical Review Letters, 2011, 106, 037205.	2.9	135
42	Atomic spin structure of antiferromagnetic domain walls. Nature Materials, 2006, 5, 477-481.	13.3	134
43	Real-Space Observation of a Right-Rotating Inhomogeneous Cycloidal Spin Spiral by Spin-Polarized Scanning Tunneling Microscopy in a Triple Axes Vector Magnet. Physical Review Letters, 2009, 103, 157201.	2.9	134
44	Revealing Antiferromagnetic Order of the Fe Monolayer on W(001): Spin-Polarized Scanning Tunneling Microscopy and First-Principles Calculations. Physical Review Letters, 2005, 94, 087204.	2.9	133
45	Quantum Hall Transition in Real Space: From Localized to Extended States. Physical Review Letters, 2008, 101, 256802.	2.9	132
46	Determination of Tip-Sample Interaction Potentials by Dynamic Force Spectroscopy. Physical Review Letters, 1999, 83, 4780-4783.	2.9	131
47	A 300â€,mK ultra-high vacuum scanning tunneling microscope for spin-resolved spectroscopy at high energy resolution. Review of Scientific Instruments, 2004, 75, 4871-4879.	0.6	130
48	Real-space observation of spin-split molecular orbitals of adsorbed single-molecule magnets. Nature Communications, 2012, 3, 953.	5 . 8	130
49	Stability of single skyrmionic bits. Nature Communications, 2015, 6, 8455.	5.8	130
50	Imaging and manipulating the spin direction of individual atoms. Nature Nanotechnology, 2010, 5, 350-353.	15.6	126
51	Atomic surface structure of Fe3O4(001) in different preparation stages studied by scanning tunneling microscopy. Surface Science, 1993, 285, 1-14.	0.8	125
52	Topology-Induced Spin Frustrations at the Cr(001) Surface Studied by Spin-Polarized Scanning Tunneling Spectroscopy. Physical Review Letters, 2000, 85, 4606-4609.	2.9	125
53	Wave-Function Mapping of InAs Quantum Dots by Scanning Tunneling Spectroscopy. Physical Review Letters, 2003, 91, 196804.	2.9	125
54	Spin-Resolved Electronic Structure of Nanoscale Cobalt Islands on Cu(111). Physical Review Letters, 2006, 96, 237203.	2.9	124

#	Article	IF	Citations
55	Consequences of the stick-slip movement for the scanning force microscopy imaging of graphite. Physical Review B, 1998, 57, 2477-2481.	1.1	123
56	Observation of Magnetic Hysteresis at the Nanometer Scale by Spin-Polarized Scanning Tunneling Spectroscopy. Science, 2001, 292, 2053-2056.	6.0	122
57	Measurement of conservative and dissipative tip-sample interaction forces with a dynamic force microscope using the frequency modulation technique. Physical Review B, 2001, 64, .	1.1	119
58	Tip-induced band bending by scanning tunneling spectroscopy of the states of the tip-induced quantum dot on InAs(110). Physical Review B, 1999, 59, 8043-8048.	1.1	116
59	Magnetization-Direction-Dependent Local Electronic Structure Probed by Scanning Tunneling Spectroscopy. Physical Review Letters, 2002, 89, 237205.	2.9	116
60	Atomic-scale interface engineering of Majorana edge modes in a 2D magnet-superconductor hybrid system. Science Advances, 2019, 5, eaav6600.	4.7	115
61	A scanning force microscope with atomic resolution in ultrahigh vacuum and at low temperatures. Review of Scientific Instruments, 1998, 69, 221-225.	0.6	109
62	A low-temperature ultrahigh vacuum scanning tunneling microscope with a split-coil magnet and a rotary motion stepper motor for high spatial resolution studies of surface magnetism. Review of Scientific Instruments, 2000, 71, 424-430.	0.6	109
63	The velocity dependence of frictional forces in point-contact friction. Applied Physics A: Materials Science and Processing, 1998, 66, S263-S267.	1.1	101
64	Molecular Kondo Chain. Nano Letters, 2012, 12, 3174-3179.	4.5	101
65	Observation of a Complex Nanoscale Magnetic Structure in a Hexagonal Fe Monolayer. Physical Review Letters, 2006, 96, 167203.	2.9	100
66	Detecting excitation and magnetization of individual dopants in a semiconductor. Nature, 2010, 467, 1084-1087.	13.7	100
67	Noncontact Atomic Force Microscopy. Nanoscience and Technology, 2009, , .	1.5	99
68	A low-temperature ultrahigh-vacuum scanning tunneling microscope with rotatable magnetic field. Review of Scientific Instruments, 1997, 68, 3806-3810.	0.6	98
69	Shape-Dependent Thermal Switching Behavior of Superparamagnetic Nanoislands. Physical Review Letters, 2004, 92, 067201.	2.9	98
70	Controllable Magnetic Doping of the Surface State of a Topological Insulator. Physical Review Letters, 2013, 110, 126804.	2.9	98
71	Magnetic sensitive force microscopy. Nano Today, 2008, 3, 28-39.	6.2	97
72	Low-load friction behavior of epitaxialC60monolayers under Hertzian contact. Physical Review B, 1995, 52, 14976-14984.	1.1	96

#	Article	IF	Citations
73	Prediction of bias-voltage-dependent corrugation reversal for STM images of bcc (110) surfaces: $W(110)$, $Ta(110)$, and $Fe(110)$. Physical Review B, 1998, 58, 16432-16445.	1.1	96
74	Modification of Electrical Properties of Graphene by Substrate-Induced Nanomodulation. Nano Letters, 2013, 13, 3494-3500.	4.5	94
75	Pinning and movement of individual nanoscale magnetic skyrmions via defects. New Journal of Physics, 2016, 18, 055009.	1.2	94
76	Quantitative analysis of dynamic-force-spectroscopy data on graphite (0001) in the contact and noncontact regimes. Physical Review B, 2000, 61, 12678-12681.	1.1	92
77	Dead but Highly Dynamic – The Stratum corneum Is Divided into Three Hydration Zones. Skin Pharmacology and Physiology, 2004, 17, 246-257.	1.1	91
78	Magnetization Reversal of Nanoscale Islands: How Size and Shape Affect the Arrhenius Prefactor. Physical Review Letters, 2009, 103, 127202.	2.9	89
79	Modelling of the scan process in lateral force microscopy. Surface Science, 1997, 375, 395-402.	0.8	88
80	Spin Excitations of Individual Fe Atoms on Pt(111): Impact of the Site-Dependent Giant Substrate Polarization. Physical Review Letters, 2013, 111, 157204.	2.9	87
81	Symmetry reduction of metal phthalocyanines on metals. Physical Review B, 2008, 78, .	1.1	86
82	Scattering States of Ionized Dopants Probed by Low Temperature Scanning Tunneling Spectroscopy. Physical Review Letters, 1998, 81, 5616-5619.	2.9	85
83	Nanometer scale structure fabrication with the scanning tunneling microscope. Applied Physics Letters, 1987, 51, 244-246.	1.5	84
84	Isolated zero field sub-10 nm skyrmions in ultrathin Co films. Nature Communications, 2019, 10, 3823.	5.8	84
85	Atomic-Resolution Dynamic Force Microscopy and Spectroscopy of a Single-Walled Carbon Nanotube: Characterization of Interatomic van der Waals Forces. Physical Review Letters, 2004, 93, 136101.	2.9	83
86	Interpretation of "true atomic resolution―images of graphite (0001) in noncontact atomic force microscopy. Physical Review B, 2000, 62, 6967-6970.	1.1	82
87	Spin-polarized scanning tunneling microscopy study of360° walls in an external magnetic field. Physical Review B, 2003, 67, .	1.1	81
88	Scanning tunneling microscope study of iron(II) phthalocyanine growth on metals and insulating surfaces. Surface Science, 2008, 602, 677-683.	0.8	81
89	Magnetization switching of submicrometer Co dots induced by a magnetic force microscope tip. Physical Review B, 1998, 58, 5563-5567.	1.1	78
90	Interface-induced chiral domain walls, spin spirals and skyrmions revealed by spin-polarized scanning tunneling microscopy. Journal of Physics Condensed Matter, 2014, 26, 394002.	0.7	77

#	Article	IF	Citations
91	Anisotropy of sliding friction on the triglycine sulfate (010) surface. Applied Physics A: Materials Science and Processing, 1995, 61, 525-533.	1.1	76
92	Dynamics of molecular self-ordering in tetraphenyl porphyrin monolayers on metallic substrates. Nanotechnology, 2009, 20, 275602.	1.3	75
93	STM study of carbon-induced reconstructions on $W(110)$: strong evidence for a surface lattice deformation. Surface Science, 1995, 344, 185-191.	0.8	73
94	Magnetism of nanoscale Fe islands studied by spin-polarized scanning tunneling spectroscopy. Physical Review B, 2001, 63, .	1.1	72
95	Direct Comparison between Potential Landscape and Local Density of States in a Disordered Two-Dimensional Electron System. Physical Review Letters, 2002, 89, 136806.	2.9	72
96	Real-Space Observation of Drift States in a Two-Dimensional Electron System at High Magnetic Fields. Physical Review Letters, 2003, 90, 056804.	2.9	70
97	Local Electronic Structure near Mn Acceptors in InAs: Surface-Induced Symmetry Breaking and Coupling to Host States. Physical Review Letters, 2007, 99, 157202.	2.9	70
98	Reversible Chiral Switching of Bis(phthalocyaninato) Terbium(III) on a Metal Surface. Nano Letters, 2012, 12, 3931-3935.	4.5	70
99	Dynamic scanning force microscopy at low temperatures on a van der Waals surface: graphite (0001). Applied Surface Science, 1999, 140, 247-252.	3.1	68
100	Domain Wall Orientation in Magnetic Nanowires. Physical Review Letters, 2004, 92, 077207.	2.9	68
101	Chiral magnetic ordering in two-dimensional ferromagnets with competing Dzyaloshinsky-Moriya interactions. Physical Review B, 2007, 75, .	1.1	66
102	Tailoring the chiral magnetic interaction between two individual atoms. Nature Communications, 2016, 7, 10620.	5.8	66
103	Thickness dependent magnetization states of Fe islands on W(110): From single domain to vortex and diamond patterns. Applied Physics Letters, 2004, 84, 948-950.	1.5	65
104	Topological Shiba bands in artificial spin chains on superconductors. Nature Physics, 2021, 17, 943-948.	6.5	65
105	Simulation of a scanned tip on a NaF(001) surface in friction force microscopy. Europhysics Letters, 1996, 36, 19-24.	0.7	64
106	Dynamic-mode scanning force microscopy study of n-lnAs(110)-(1 \tilde{A} —1)at low temperatures. Physical Review B, 2000, 61, 2837-2845.	1.1	64
107	Visualization of the Barkhausen Effect by Magnetic Force Microscopy. Physical Review Letters, 2004, 92, 077206.	2.9	64
108	Conical Spin-Spiral State in an Ultrathin Film Driven by Higher-Order Spin Interactions. Physical Review Letters, 2012, 108, 087205.	2.9	64

#	Article	IF	CITATIONS
109	Robust Surface Doping of Bi ₂ Se ₃ by Rubidium Intercalation. ACS Nano, 2012, 6, 7009-7015.	7.3	64
110	Skyrmionics gets hot. Nature Materials, 2016, 15, 493-494.	13.3	64
111	Atomically resolved mechanical response of individual metallofullerene molecules confined inside carbon nanotubes. Nature Nanotechnology, 2008, 3, 337-341.	15.6	63
112	Tuning emergent magnetism in a Hund's impurity. Nature Nanotechnology, 2015, 10, 958-964.	15.6	62
113	Minimal radius of magnetic skyrmions: statics and dynamics. New Journal of Physics, 2016, 18, 045021.	1.2	62
114	Spin-Resolved Spectroscopy of the Yu-Shiba-Rusinov States of Individual Atoms. Physical Review Letters, 2017, 119, 197002.	2.9	62
115	Nano- and atomic-scale magnetism studied by spin-polarized scanning tunneling microscopy and spectroscopy. Solid State Communications, 2001, 119, 341-355.	0.9	61
116	Assessing the performance of two-dimensional dopant profiling techniques. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2004, 22, 385.	1.6	61
117	On the preparation and electronic properties of clean $W(110)$ surfaces. Surface Science, 2007, 601, 3308-3314.	0.8	61
118	Origin of the ferroelectric domain contrast observed in lateral force microscopy. Physical Review B, 1998, 57, 161-169.	1.1	60
119	Simultaneous imaging of the In and As sublattice on InAs(110)- $(1\tilde{A}-1)$ with dynamic scanning force microscopy. Applied Surface Science, 1999, 140, 293-297.	3.1	60
120	Bulk Cr tips with full spatial magnetic sensitivity for spin-polarized scanning tunneling microscopy. Applied Physics Letters, 2010, 97, .	1.5	60
121	Current-driven domain wall motion in cylindrical nanowires. Physical Review B, 2010, 82, .	1.1	60
122	Large Dzyaloshinskii-Moriya interaction induced by chemisorbed oxygen on a ferromagnet surface. Science Advances, 2020, 6, eaba4924.	4.7	60
123	Effect of charge manipulation on scanning tunneling spectra of single Mn acceptors in InAs. Physical Review B, 2008, 77, .	1.1	59
124	Determination of site specific interatomic forces between an iron coated tip and the NiO(001) surface by force field spectroscopy. Surface Science, 2003, 527, 12-20.	0.8	58
125	Progress towards spinâ€polarized scanning tunneling microscopy. Journal of Applied Physics, 1992, 71, 5489-5499.	1.1	57
126	Electrostatic force microscopy on ferroelectric crystals in inert gas atmosphere. Physical Review B, 1997, 55, 4-7.	1.1	57

#	Article	IF	Citations
127	Noncollinear Magnetic Order in Quasicrystals. Physical Review Letters, 2004, 93, 076407.	2.9	57
128	Chemical Resolution at Ionic Crystal Surfaces Using Dynamic Atomic Force Microscopy with Metallic Tips. Physical Review Letters, 2011, 106, 216102.	2.9	56
129	Dynamic scanning force microscopy at low temperatures on a noble-gas crystal: Atomic resolution on the xenon(111) surface. Europhysics Letters, 1999, 48, 276-279.	0.7	55
130	Dynamic low-temperature scanning force microscopy on nickel oxide (001). Applied Physics A: Materials Science and Processing, 2001, 72, S27-S30.	1.1	54
131	Interfacial superconductivity in a bi-collinear antiferromagnetically ordered FeTe monolayer on a topological insulator. Nature Communications, 2017, 8, 14074.	5.8	53
132	Surface modification in the nanometer range by the scanning tunneling microscope. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1988, 6, 537-539.	0.9	52
133	Tailoring Molecular Self-Assembly of Magnetic Phthalocyanine Molecules on Fe- and Co-Intercalated Graphene. ACS Nano, 2013, 7, 11341-11349.	7.3	52
134	H-induced plastic deformation of Gd thin films studied by STM. Physical Review B, 2000, 61, 9964-9967.	1.1	51
135	Unoccupied surface state on $Pt(111)$ revealed by scanning tunneling spectroscopy. Physical Review B, 2005, 72, .	1.1	51
136	Fabrication of nanometer structures using STM. Applied Surface Science, 1992, 54, 271-277.	3.1	50
137	Quantitative analysis of the frictional properties of solid materials at low loads. II. Mica and germanium sulfide. Physical Review B, 1997, 56, 6997-7000.	1.1	50
138	Magnetic exchange splitting of the Gd(0001) surface state studied by variable-temperature scanning tunneling spectroscopy. Applied Physics A: Materials Science and Processing, 1998, 66, S121-S124.	1.1	50
139	Vacuum tunneling of spin-polarized electrons detected by scanning tunneling microscopy. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1991, 9, 519.	1.6	49
140	Absence of a spin-signature from a single Ho adatom as probed by spin-sensitive tunneling. Nature Communications, 2016, 7, 10454.	5.8	49
141	Spin-dependent electronic and magnetic properties of Co nanostructures on $Pt(111)$ studied by spin-resolved scanning tunneling spectroscopy. Physical Review B, 2006, 74, .	1.1	48
142	Probing the Magnetic Exchange Forces of Iron on the Atomic Scale. Nano Letters, 2009, 9, 200-204.	4.5	48
143	Multiscale magnetic study of Ni(111) and graphene on Ni(111). Physical Review B, 2011, 84, .	1.1	48
144	Spin-orbit coupling induced splitting of Yu-Shiba-Rusinov states in antiferromagnetic dimers. Nature Communications, 2021, 12, 2040.	5.8	48

#	Article	IF	Citations
145	A low-temperature ultrahigh vacuum scanning force microscope with a split-coil magnet. Review of Scientific Instruments, 2002, 73, 3508-3514.	0.6	47
146	Local tunneling barrier height images obtained with the scanning tunneling microscope. Surface Science, 1987, 189-190, 24-28.	0.8	46
147	Scanning tunneling spectroscopy of Fe/W(110) using iron covered probe tips. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1997 , 15 , 1285 - 1290 .	0.9	46
148	Vertical polarization of quantum magnets in high density arrays of nickel dots with small height-to-diameter ratio. Applied Physics Letters, 1998, 72, 2168-2170.	1.5	46
149	Domain wall motion damped by the emission of spin waves. Physical Review B, 2010, 81, .	1.1	46
150	Structural, electronic, and magnetic properties of a Mn monolayer on W(110). Physical Review B, 2002, 66, .	1,1	45
151	Quantitative Measurement of the Magnetic Exchange Interaction across a Vacuum Gap. Physical Review Letters, 2011, 106, 257202.	2.9	45
152	Thermal Stability of an Interface-Stabilized Skyrmion Lattice. Physical Review Letters, 2014, 113, 077202.	2.9	45
153	Impact of the skyrmion spin texture on magnetoresistance. Physical Review B, 2017, 95, .	1.1	45
154	Local structure of the Si(100) surface studied by scanning tunneling microscopy. Surface Science, 1990, 232, 1-5.	0.8	44
155	Temperature-dependent exchange splitting of the magnetic Gd(0001) surface state. Journal of Magnetism and Magnetic Materials, 1998, 184, 155-165.	1.0	44
156	Nano-electronics and spintronics with nanoparticles. Journal of Physics: Conference Series, 2011, 292, 012002.	0.3	44
157	Long-range magnetic coupling between nanoscale organic–metal hybrids mediated by a nanoskyrmion lattice. Nature Nanotechnology, 2014, 9, 1018-1023.	15.6	44
158	Competition of Dzyaloshinskii-Moriya and Higher-Order Exchange Interactions in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi><mml:mi>Rh</mml:mi><mml:mo>/</mml:mo><mml:mi>Fe</mml:mi><td>> <7mml:m</td><td>ath></td></mml:mi></mml:math>	> <7mml:m	ath>
159	Nanoscale magnetic skyrmions and target states in confined geometries. Physical Review B, 2019, 99, .	1.1	44
160	Precursors of Majorana modes and their length-dependent energy oscillations probed at both ends of atomic Shiba chains. Nature Nanotechnology, 2022, 17, 384-389.	15.6	44
161	Structure of crossâ€tie wall in thin Co films resolved by magnetic force microscopy. Applied Physics Letters, 1996, 68, 3635-3637.	1.5	43
162	Direct observation of confined states in metallic single-walled carbon nanotubes. Applied Physics Letters, 2003, 83, 1011-1013.	1.5	43

#	Article	IF	CITATIONS
163	Multipolar Ordering and Magnetization Reversal in Two-Dimensional Nanomagnet Arrays. Physical Review Letters, 2005, 95, 207202.	2.9	43
164	Spin-Polarized Yu-Shiba-Rusinov States in an Iron-Based Superconductor. Physical Review Letters, 2021, 126, 076802.	2.9	43
165	Application of scanning tunneling microscopy to disordered systems. Surface Science, 1987, 181, 46-54.	0.8	42
166	Correlation of dislocation and domain structure of $Cr(001)$ investigated by spin-polarized scanning tunneling microscopy. Physical Review B, 2003, 67, .	1.1	42
167	Spin Friction Observed on the Atomic Scale. Physical Review Letters, 2012, 109, 116102.	2.9	42
168	Quantum technology: from research to application. Applied Physics B: Lasers and Optics, 2016, 122, 1.	1.1	42
169	Engineering the spin couplings in atomically crafted spin chains on an elemental superconductor. Nature Communications, 2018, 9, 3253.	5.8	42
170	Charge freezing and surface anisotropy on magnetite (100). Journal of Applied Physics, 1993, 73, 6742-6744.	1.1	41
171	Influence of the degree of decoupling of graphene on the properties of transition metal adatoms. Physical Review B, 2013, 87, .	1.1	41
172	Electric-Field-Induced Magnetic Anisotropy in a Nanomagnet Investigated on the Atomic Scale. Physical Review Letters, 2014, 112, 017204.	2.9	41
173	Composition-driven change of the magnetic anisotropy of ultrathin $\text{Co/Au}(111)$ films studied by means of magnetic-force microscopy in ultrahigh vacuum. Physical Review B, 1999, 59, 4273-4278.	1.1	40
174	Toward Tailored All-Spin Molecular Devices. Nano Letters, 2016, 16, 577-582.	4.5	40
175	Inducing skyrmions in ultrathin Fe films by hydrogen exposure. Nature Communications, 2018, 9, 1571.	5.8	40
176	Evidence for Selective Imaging of Different Magnetic Ions on the Atomic Scale by Using a Scanning Tunnelling Microscope with a Ferromagnetic Probe Tip. Europhysics Letters, 1992, 19, 141-146.	0.7	39
177	Temperature-Dependent Exchange Splitting of a Surface State on a Local-Moment Magnet: Tb(0001). Physical Review Letters, 1999, 83, 3017-3020.	2.9	39
178	Investigation of the swelling of human skin cells in liquid media by tapping mode scanning force microscopy. Applied Physics A: Materials Science and Processing, 2001, 72, S125-S128.	1.1	39
179	Tunneling anisotropic magnetoresistance on the atomic scale. Physical Review B, 2012, 86, .	1.1	39
180	Nanostructural and local electronic properties of Fe/W(110) correlated by scanning tunneling spectroscopy. Physical Review B, 1996, 54, R8385-R8388.	1.1	38

#	Article	IF	Citations
181	Coverage dependence of the Fe-induced Fermi-level shift and the two-dimensional electron gas on InAs(110). Physical Review B, 2000, 61, 13805-13812.	1.1	38
182	Experimental Evidence for Intra-Atomic Noncollinear Magnetism at Thin Film Probe Tips. Physical Review Letters, 2001, 86, 2142-2145.	2.9	38
183	Spin-Resolved Splitting of Kondo Resonances in the Presence of RKKY-Type Coupling. Physical Review Letters, 2012, 108, 087203.	2.9	38
184	Non-collinear spin states in bottom-up fabricated atomic chains. Nature Communications, 2018, 9, 2853.	5.8	38
185	Different Response of Atomic Force Microscopy and Scanning Tunnelling Microscopy to Charge Density Waves. Europhysics Letters, 1989, 9, 695-700.	0.7	37
186	Contributions of scanning probe microscopy and spectroscopy to the investigation and fabrication of nanometer-scale structures. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1994, 12, 515.	1.6	37
187	Atomic-scale spin-polarization maps using functionalized superconducting probes. Science Advances, 2021, 7, .	4.7	37
188	Surface structure of donor graphite intercalation compounds by scanning tunneling microscopy. Physical Review B, 1989, 39, 11135-11138.	1.1	36
189	Low temperature scanning tunneling spectroscopy on InAs(110). Journal of Electron Spectroscopy and Related Phenomena, 2000, 109, 127-145.	0.8	36
190	Using Metallic Noncontact Atomic Force Microscope Tips for Imaging Insulators and Polar Molecules: Tip Characterization and Imaging Mechanisms. ACS Nano, 2014, 8, 5339-5351.	7.3	36
191	Influence of the Local Atom Configuration on a Hexagonal Skyrmion Lattice. Nano Letters, 2015, 15, 3280-3285.	4.5	36
192	Unambiguous Determination of the Adsorption Geometry of a Metalâ^'Organic Complex on a Bulk Insulator. Nano Letters, 2010, 10, 2965-2971.	4.5	35
193	Guiding Spin Spirals by Local Uniaxial Strain Relief. Physical Review Letters, 2016, 116, 017201. Discovery of Magnetic Single- and Triple- <mml:math< td=""><td>2.9</td><td>35</td></mml:math<>	2.9	35
194	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:mi mathvariant="bold">q</mml:mi></mml:mrow> States in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi>/<mml:mi <="" <mml:mi="" mi="" td=""><td>2.9 i> <mml:mo< td=""><td>35 0</td></mml:mo<></td></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:math>	2.9 i> <mml:mo< td=""><td>35 0</td></mml:mo<>	35 0
195	stretchy="false">(<mml:mn>0001</mml:mn> <mml:mo) 0="" 10="" 197="" 1995,="" 50="" 52,="" 5967-5976.<="" b,="" by="" c60thin="" etqq0="" films="" force="" ges(001)="" growth="" microscopy.="" of="" on="" overlock="" physical="" review="" rgbt="" scanning="" studied="" td="" tf="" tj="" to=""><td>d (stretchy 1.1</td><td>/="false">)∢/m 34</td></mml:mo)>	d (stretchy 1.1	/="false">)∢/m 34
196	Surface structure of ferroelectric domains on the triglycine sulfate (010) surface. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1996, 14, 1180.	1.6	34
197	Atomic and local electronic structure of Gd thin films studied by STM and STS. Physical Review B, 1997, 56, 3636-3639.	1.1	34
198	Comment on "Damping Mechanism in Dynamic Force Microscopy― Physical Review Letters, 2001, 88, 019601.	2.9	34

#	Article	IF	Citations
199	Controlled creation and stability of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>k</mml:mi><mml:mi>i€</mml:mi>skyrmions on a discrete lattice. Physical Review B, 2018, 97, .</mml:mrow></mml:math>	k/mml:mro	\& 4:m
200	Controlling in-gap end states by linking nonmagnetic atoms and artificially-constructed spin chains on superconductors. Nature Communications, 2020, 11, 4707.	5.8	34
201	Observation of Hydrogen-Induced Dzyaloshinskii-Moriya Interaction and Reversible Switching of Magnetic Chirality. Physical Review X, 2021, 11, .	2.8	34
202	STM measurements on the InAs(110) surface directly compared with surface electronic structure calculations. Physical Review B, 2003, 68 , .	1.1	33
203	Complex magnetism of the Fe monolayer on Ir(111). New Journal of Physics, 2007, 9, 396-396.	1.2	33
204	Computing with spins and magnets. MRS Bulletin, 2014, 39, 696-702.	1.7	33
205	Atomic resolution in scanning force microscopy: Concepts, requirements, contrast mechanisms, and image interpretation. Physical Review B, 2000, 62, 13089-13097.	1.1	32
206	Direct Measurement of the Local Density of States of a Disordered One-Dimensional Conductor. Physical Review Letters, 2003, 91, 076803.	2.9	32
207	Fe adatoms on graphene/Ru(0001): Adsorption site and local electronic properties. Physical Review B, 2011, 84, .	1.1	32
208	Strong out-of-plane magnetic anisotropy of Fe adatoms on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>Bi</mml:mi><mml:mn>2<td>> 1/1mml:ms</td><td>sցե><mml:n< td=""></mml:n<></td></mml:mn></mml:msub></mml:math>	> 1/1 mml:ms	s ցե > <mml:n< td=""></mml:n<>
209	Probing the Nano-Skyrmion Lattice on Fe/Ir(111) with Magnetic Exchange Force Microscopy. Physical Review Letters, 2017, 119, 047205.	2.9	32
210	Recent advances in scanning tunneling microscopy involving magnetic probes and samples. Applied Physics A: Solids and Surfaces, 1991, 53, 349-355.	1.4	31
211	Origin of Landau oscillations observed in scanning tunneling spectroscopy onn-InAs(110). Physical Review B, 2000, 62, 7257-7263.	1.1	31
212	Correlation Effects in Wave Function Mapping of Molecular Beam Epitaxy Grown Quantum Dots. Nano Letters, 2007, 7, 2701-2706.	4.5	31
213	"Naked―Iron-5,10,15-triphenylcorrole on Cu(111): Observation of Chirality on a Surface and Manipulation of Multiple Conformational States by STM. Journal of the American Chemical Society, 2008, 130, 14072-14073.	6.6	31
214	Ammonia synthesis over a supported iron catalyst prepared from an amorphous iron-zirconium precursor II. Surface morphological changes during the genesis of the catalyst. Journal of Catalysis, 1987, 108, 452-466.	3.1	30
215	Direct writing of nanometer scale structures on glassy metals by the scanning tunneling microscope. European Physical Journal B, 1989, 77, 281-286.	0.6	30
216	Magnetic imaging at the atomic level. European Physical Journal B, 1992, 86, 1-2.	0.6	30

#	Article	IF	CITATIONS
217	Imaging of domain-inverted gratings in LiNbO3 by electrostatic force microscopy. Applied Physics Letters, 1997, 71, 146-148.	1.5	30
218	Spatial Fluctuations of the Density of States in Magnetic Fields Observed with Scanning Tunneling Spectroscopy. Physical Review Letters, 2000, 84, 5588-5591.	2.9	30
219	Magnetization reversal of a structurally disordered manganite thin film with perpendicular anisotropy. Physical Review B, 2005, 71, .	1.1	30
220	Perturbation theory of exchange interaction. Physical Review B, 2006, 74, .	1.1	30
221	Heat assisted spin torque switching of quasistable nanomagnets across a vacuum gap. Applied Physics Letters, 2010, 96, .	1.5	30
222	Detecting the dipole moment of a single carbon monoxide molecule. Applied Physics Letters, 2014, 105, .	1.5	30
223	Band-gap engineering by Bi intercalation of graphene on Ir(111). Physical Review B, 2016, 93, .	1.1	30
224	Topography and local modification of the HoBa2Cu3O7â^'x(001) surface using scanning tunneling microscopy. Applied Physics Letters, 1988, 53, 2447-2449.	1.5	29
225	Impurity-induced resistivity of ferroelastic domain walls in doped lead phosphate. Journal of Physics Condensed Matter, 2003, 15, 957-962.	0.7	29
226	Joule Heating and Spin-Transfer Torque Investigated on the Atomic Scale Using a Spin-Polarized Scanning Tunneling Microscope. Physical Review Letters, 2011, 107, 186601.	2.9	29
227	Indirect Control of Antiferromagnetic Domain Walls with Spin Current. Physical Review Letters, 2011, 106, 067204.	2.9	29
228	Exploring the Relation Between Intramolecular Conjugation and Band Dispersion in One-Dimensional Polymers. Journal of Physical Chemistry C, 2017, 121, 27118-27125.	1.5	29
229	Magnetism and in-gap states of 3d transition metal atoms on superconducting Re. Npj Quantum Materials, 2019, 4, .	1.8	29
230	Hydrogenated amorphous silicon studied by scanning tunneling microscopy. Journal of Applied Physics, 1988, 63, 4515-4517.	1.1	28
231	Scanning Tunnelling Microscopy Study of Si(111) $7\tilde{A}$ —7 in the Presence of Multiple-Step Edges. Europhysics Letters, 1990, 12, 57-61.	0.7	28
232	Local Density of States of a Three-Dimensional Conductor in the Extreme Quantum Limit. Physical Review Letters, 2001, 86, 1582-1585.	2.9	28
233	Inhomogeneous electronic properties of monolayer graphene on Ru(0001). Physical Review B, 2011, 83, .	1.1	28
234	Atomic-resolution surface studies of binary and ternary alkali-metal–graphite intercalation compounds by scanning tunneling microscopy. Physical Review B, 1992, 45, 1829-1837.	1.1	27

#	Article	IF	Citations
235	Penetration pathways of fluorescent dyes in human hair fibres investigated by scanning near-field optical microscopy. Journal of Microscopy, 2000, 200, 179-186.	0.8	27
236	Detection of doping atom distributions and individual dopants in InAs(110) by dynamic-mode scanning force microscopy in ultrahigh vacuum. Physical Review B, 2000, 62, 13617-13622.	1.1	27
237	Three-Dimensional Force Field Spectroscopy. AIP Conference Proceedings, 2003, , .	0.3	27
238	Absence of spin-flip transition at the Cr(001) surface: $\hat{a} \in fA$ combined spin-polarized scanning tunneling microscopy and neutron scattering study. Physical Review B, 2005, 71, .	1.1	27
239	Spin-polarized scanning tunneling microscopy and spectroscopy of ferromagnetic $Dy(0001)/W(110)$ films. Physical Review B, 2007, 76, .	1.1	27
240	LSMO – growing opportunities by PLD and applications in spintronics. Journal of Physics: Conference Series, 2011, 292, 012003.	0.3	27
241	Robust Nodal Structure of Landau Level Wave Functions Revealed by Fourier Transform Scanning Tunneling Spectroscopy. Physical Review Letters, 2012, 109, 116805.	2.9	27
242	Orbital selective coupling between Ni adatoms and graphene Dirac electrons. Physical Review B, 2012, 85, .	1.1	27
243	Issues of atomicâ€resolution structure and chemical analysis by scanning probe microscopy and spectroscopy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1996, 14, 1161-1167.	0.9	26
244	Vacuum-tunneling magnetoresistance: The role of spin-polarized surface states. Applied Physics Letters, 1999, 75, 124-126.	1.5	26
245	Anomalously large <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>g</mml:mi></mml:math> factor of single atoms adsorbed on a metal substrate. Physical Review B, 2011, 84, .	1.1	26
246	Intra- and interband electron scattering in a hybrid topological insulator: Bismuth bilayer on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Bi</mml:mi><mml:mrow><mpl:msub><mml:mi>Bi</mml:mi><mml:mrow><mpl:mrow><mml:msub><mml:mi>Bi</mml:mi><mml:mrow><mml:msub><mml:mi>Bi</mml:mi><mml:mi><mml:mrow><mml:msub><mml:mi>Bi</mml:mi><mml:mi><mml:msub><mml:mi>Bi</mml:mi><mml:mi><mml:msub><mml:msub><mml:msub><mml:mi>Bi</mml:mi><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msu< td=""><td>n>¹21√mml</td><td>:mn></td></mml:msu<></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:mi></mml:msub></mml:mi></mml:msub></mml:mrow></mml:mi></mml:msub></mml:mrow></mml:msub></mpl:mrow></mml:mrow></mpl:msub></mml:mrow></mml:msub></mml:mrow></mml:math>	n> ¹ 21√mml	:mn>
247	Domain walls and Dzyaloshinskii-Moriya interaction in epitaxial Co/Ir(111) and Pt/Co/Ir(111). Physical Review B, 2018, 97, .	1.1	26
248	Plumbene on a Magnetic Substrate: A Combined Scanning Tunneling Microscopy and Density Functional Theory Study. Physical Review Letters, 2020, 124, 126401.	2.9	26
249	Local symmetry breaking in stage-1 alkali-metal–graphite intercalation compounds studied by scanning tunneling microscopy. Physical Review B, 1990, 42, 1848-1851.	1.1	25
250	Growth of thin Mn films on $W(110)$ studied by means of in-situ scanning tunnelling microscopy. Surface Science, 1999, 432, 8-20.	0.8	25
251	Simulation of NC-AFM images of xenon(111). Applied Physics A: Materials Science and Processing, 2001, 72, S35-S38.	1.1	25
252	Nb-induced two-dimensional electron gas onnâ^'InAs(110):Anomalous coverage dependence. Physical Review B, 2001, 63, .	1.1	25

#	Article	IF	CITATIONS
253	Scanning tunneling spectroscopy on Co(0001): Spectroscopic signature of stacking faults and dislocation lines. Physical Review B, 2004, 70, .	1.1	25
254	Interpretation of the atomic scale contrast obtained on graphite and single-walled carbon nanotubes in the dynamic mode of atomic force microscopy. Nanotechnology, 2005, 16, S134-S137.	1.3	25
255	A low-temperature spin-polarized scanning tunneling microscope operating in a fully rotatable magnetic field. Review of Scientific Instruments, 2009, 80, 023708.	0.6	25
256	Steering Twoâ€Dimensional Molecular Growth via Dipolar Interaction. ChemPhysChem, 2009, 10, 2008-2011.	1.0	25
257	A gateway towards non-collinear spin processing using three-atom magnets with strong substrate coupling. Nature Communications, 2017, 8, 642.	5.8	25
258	Hexagonal and nonhexagonal superlattice structures on stage-1 alkali metal graphite intercalation compounds studied by scanning tunnelling microscopy. Synthetic Metals, 1990, 38, 157-167.	2.1	24
259	Micromagnetic properties and magnetization switching of single domain Co dots studied by magnetic force microscopy. Zeitschrift Fýr Physik B-Condensed Matter, 1996, 101, 1-2.	1.1	24
260	Adsorbates onGd(0001):A combined scanning tunneling microscopy and photoemission study. Physical Review B, 1999, 59, 8195-8208.	1.1	24
261	Temperature-dependent scanning tunneling spectroscopy of Cr(001): Orbital Kondo resonance versus surface state. Physical Review B, 2005, 72, .	1.1	24
262	Structure and magnetism of ultra-thin chromium layers on W(110). New Journal of Physics, 2008, 10, 013005.	1.2	24
263	Quantized spin waves in ferromagnetic and antiferromagnetic structures with domain walls. Physical Review B, 2009, 79, .	1.1	24
264	Response of the topological surface state to surface disorder in TlBiSe ₂ . New Journal of Physics, 2015, 17, 023067.	1.2	24
265	Reorientation of the diagonal double-stripe spin structure at Fe1+yTe bulk and thin-film surfaces. Nature Communications, 2017, 8, 13939.	5.8	24
266	Stabilizing spin systems via symmetrically tailored RKKY interactions. Nature Communications, 2019, 10, 2565.	5.8	24
267	Stochastic dynamics and pattern formation of geometrically confined skyrmions. Communications Physics, 2019, 2, .	2.0	24
268	Different response of atomic force microscopy and scanning tunneling microscopy to charge density waves. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1990, 8, 495-499.	0.9	23
269	Size Dependence of the Curie Temperature of Separate Nickel Particles Studied by Interference Electron Microscopy. Europhysics Letters, 1995, 31, 567-572.	0.7	23
270	Scanning tunneling spectroscopy on n-InAs(110): Landau-level quantization and scattering of electron waves at dopant atoms. Applied Physics A: Materials Science and Processing, 1998, 66, S203-S206.	1.1	23

#	Article	IF	CITATIONS
271	Magnetic properties of the surface studied by spin-polarized scanning tunneling spectroscopy. Journal of Magnetism and Magnetic Materials, 2002, 240, 64-69.	1.0	23
272	Magnetism of iron on tungsten (001) studied by spin-resolved scanning tunneling microscopy and spectroscopy. Physical Review B, 2004, 70, .	1.1	23
273	Spin-polarized scanning tunneling microscopy in field emission mode. Applied Physics Letters, 2007, 91, .	1.5	23
274	A versatile variable-temperature scanning tunneling microscope for molecular growth. Review of Scientific Instruments, 2008, 79, 083903.	0.6	23
275	Adsorption and conformation of porphyrins on metallic surfaces. Journal of Vacuum Science & Technology B, 2009, 27, 799-804.	1.3	23
276	Spin torque and critical currents for magnetic vortex nano-oscillator in nanopillars. Journal of Physics: Conference Series, 2011, 292, 012006.	0.3	23
277	Spin-resolved characterization of single cobalt phthalocyanine molecules on a ferromagnetic support. Physical Review B, 2012, 86, .	1.1	23
278	Skyrmions at the Edge: Confinement Effects in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi><mml:mi>Fe</mml:mi><mml:mo>/</mml:mo><mml:mi>Ir</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>no>/mml:mo><mml:mo) (<="" 10="" 447="" 50="" etqq0000="" overlock="" rgbt="" td="" tf="" tj=""><td>2.9 stretchy='</td><td>23 "false">)</td></mml:mo)></mml:mi></mml:mi></mml:math>	2.9 stretchy='	23 "false">)
279	Fabrication of nano-dot- and nano-ring-arrays by nanosphere lithography. Applied Physics A: Materials Science and Processing, 1996, 63, 617-619.	1.1	22
280	Spin-Polarized Electron Scattering at Single Oxygen Adsorbates on a Magnetic Surface. Physical Review Letters, 2004, 92, 046801.	2.9	22
281	Spin polarization of platinum (111) induced by the proximity to cobalt nanostripes. Physical Review B, $2011, 83, .$	1.1	22
282	Long Spin-Relaxation Times in a Transition-Metal Atom in Direct Contact to a Metal Substrate. Nano Letters, 2018, 18, 1978-1983.	4.5	22
283	Present and future developments of SPM systems as mass storage devices. Applied Physics A: Materials Science and Processing, 1999, 68, 131-135.	1.1	21
284	Dynamic force microscopy with atomic resolution at low temperatures. Applied Surface Science, 2002, 188, 245-251.	3.1	21
285	Pros and cons: cryo-electron microscopic evaluation of block faces versus cryo-sections from frozen-hydrated skin specimens prepared by different techniques. Journal of Microscopy, 2007, 225, 201-207.	0.8	21
286	Pattern formation in skyrmionic materials with anisotropic environments. Physical Review B, 2016, 94,	1.1	21
287	Combined feedback and sympathetic cooling of a mechanical oscillator coupled to ultracold atoms. New Journal of Physics, 2018, 20, 093020.	1.2	21
288	STM on Layered Materials. Springer Series in Surface Sciences, 1992, , 131-179.	0.3	21

#	Article	IF	CITATIONS
289	Physical properties of icosahedral and glassy Pd?U?Si alloys. European Physical Journal B, 1987, 68, 313-324.	0.6	20
290	Donor graphite intercalation compounds studied with a high stability STM. Journal of Microscopy, 1988, 152, 509-514.	0.8	20
291	Hydrogen adsorption on Gd(0001). Surface Science, 1998, 410, 189-199.	0.8	20
292	Nonlocality of the exchange interaction probed by scanning tunneling spectroscopy. Physical Review B, 2001, 63, .	1.1	20
293	Atomic magnetism revealed by spin-resolved scanning tunnelling spectroscopy. Journal Physics D: Applied Physics, 2011, 44, 464009.	1.3	20
294	Single-atom magnetometry. Current Opinion in Solid State and Materials Science, 2011, 15, 1-7.	5.6	20
295	Scanning tunneling microscopy study of Fe, Co and Cr growth on Re(0001). Surface Science, 2014, 630, 280-285.	0.8	20
296	On-Surface Oligomerization of Self-Terminating Molecular Chains for the Design of Spintronic Devices. ACS Nano, 2017, 11, 9200-9206.	7.3	20
297	Magneto-Seebeck tunneling on the atomic scale. Science, 2019, 363, 1065-1067.	6.0	20
298	Correlation of structural and local electronic and magnetic properties of Fe/Cr(001) studied by spin-polarized scanning tunnelling microscopy. Journal of Physics Condensed Matter, 2003, 15, S2513-S2531.	0.7	19
299	Interplay between magnetic and spatial order in quasicrystals. Philosophical Magazine, 2006, 86, 733-739.	0.7	19
300	Magnetic properties of monolayer Co islands on $Ir(111)$ probed by spin-resolved scanning tunneling microscopy. Physical Review B, 2011, 84, .	1.1	19
301	Enhanced Atomic-Scale Spin Contrast due to Spin Friction. Physical Review Letters, 2014, 112, 076102.	2.9	19
302	Giant magnetization canting due to symmetry breaking in zigzag Co chains on Ir(001). New Journal of Physics, 2015, 17, 023014.	1.2	19
303	Long-range focusing of magnetic bound states in superconducting lanthanum. Nature Communications, 2020, 11, 4573.	5.8	19
304	Investigation of the microstructure of an Fe91Zr9 catalyst prepared from the amorphous alloy. Materials Science and Engineering, 1988, 99, 501-505.	0.1	18
305	Wigner glass on the magnetite (001) surface observed by scanning tunneling microscopy with a ferromagnetic tip. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1994, 12, 2118.	1.6	18
306	Scanning and friction-force microscopy of thin C60 films on GeS(001). Applied Physics A: Solids and Surfaces, 1994, 59, 11-15.	1.4	18

#	Article	IF	Citations
307	Recent Advances in Nanostructural Investigations and Modifications of Solid Surfaces by Scanning Probe Methods. Japanese Journal of Applied Physics, 1995, 34, 3388.	0.8	18
308	STM-study of GdW(110) at submonolayer coverages. Surface Science, 1997, 385, L990-L996.	0.8	18
309	Hydrogen Induced Plastic Deformation of Thin Films. Materials Research Society Symposia Proceedings, 1999, 594, 75.	0.1	18
310	Imaging magnetic nanostructures by spin-polarized scanning tunneling spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2001, 114-116, 1055-1062.	0.8	18
311	Determining the spin polarization of surfaces by spin-polarized scanning tunneling spectroscopy. Applied Physics A: Materials Science and Processing, 2003, 76, 873-877.	1.1	18
312	From quantized states to percolation: Scanning tunneling spectroscopy of a strongly disordered two-dimensional electron system. Physical Review B, 2003, 68, .	1.1	18
313	Imaging correlated wave functions of few-electron quantum dots: Theory and scanning tunneling spectroscopy experiments. Journal of Applied Physics, 2007, 101, 081714.	1.1	18
314	Inversion of spin polarization above individual magnetic adatoms. Physical Review B, 2010, 82, .	1.1	18
315	Determining Adsorption Geometry, Bonding, and Translational Pathways of a Metal–Organic Complex on an Oxide Surface: Co-Salen on NiO(001). Journal of Physical Chemistry C, 2013, 117, 1105-1112.	1.5	18
316	Co atoms on Bi ₂ Se ₃ revealing a coverage dependent spin reorientation transition. New Journal of Physics, 2013, 15, 113026.	1.2	18
317	Local tunnel magnetoresistance of an iron intercalated graphene-based heterostructure. Journal of Physics Condensed Matter, 2014, 26, 394004.	0.7	18
318	Formation and structural analysis of twisted bilayer graphene on Ni(111) thin films. Surface Science, 2014, 625, 44-49.	0.8	18
319	Magnetic Nano-skyrmion Lattice Observed in a Si-Wafer-Based Multilayer System. ACS Nano, 2015, 9, 5908-5912.	7.3	18
320	STM activity at the University of Basel. IBM Journal of Research and Development, 1986, 30, 500-508.	3.2	17
321	Summary Abstract: Dipalmitoylphosphatidylcholine–Langmuir–Blodgett films on various substrates [Si(111), Au, Sn] studied by scanning tunneling microscopy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1988, 6, 358-359.	0.9	17
322	Magnetic nanostructures studied by scanning probe microscopy and spectroscopy. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1997, 15, 1330.	1.6	17
323	Observation of 5fstates in Uâ $^{\bullet}$ W(110) films by means of scanning tunneling spectroscopy. Physical Review B, 2004, 70, .	1.1	17
324	Spin-polarized scanning tunneling microscopy through an adsorbate layer: Sulfur-covered Fe/W(110). Surface Science, 2006, 600, L20-L24.	0.8	17

#	Article	IF	Citations
325	Superconductivity of lanthanum revisited: enhanced critical temperature in the clean limit. Journal of Physics Condensed Matter, 2014, 26, 425703.	0.7	17
326	Localized spin waves in isolated <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>k</mml:mi><mml:mi>ï€skyrmions. Physical Review B, 2018, 98, .</mml:mi></mml:mrow></mml:math 	> < /m ml:m	rowን
327	Topological superconductivity induced by a triple- $<$ b>q $<$ /b> magnetic structure. Physical Review B, 2020, 102, .	1.1	17
328	Scanning tunneling and scanning electron microscopy on high-Tc superconductors. Physica C: Superconductivity and Its Applications, 1988, 153-155, 1000-1001.	0.6	16
329	Scanning tunneling microscopy study of the degree of dimer asymmetry on the Si(001)-(2 $ ilde{A}-1$) surface. Surface Science, 1992, 274, 93-98.	0.8	16
330	Determination of C60/C70 ratios in fullerene mixtures and film characterization by scanning tunneling microscopy. Applied Physics A: Materials Science and Processing, 1993, 56, 197-205.	1.1	16
331	Local structure and dynamics of a segregatedc(2×2) sulfur layer on Pd(001) studied by scanning tunneling microscopy. Physical Review B, 1993, 47, 9963-9966.	1.1	16
332	Rapid communication Fabrication of nano-dot- and nano-ring-arrays by nanosphere lithography. Applied Physics A: Materials Science and Processing, 1996, 63, 617-619.	1.1	16
333	Scanning capacitance microscope as a tool for the characterization of integrated circuits. Applied Physics A: Materials Science and Processing, 1998, 66, S421-S426.	1.1	16
334	Imaging of sub-unit-cell structures in the contact mode of the scanning force microscope. Physical Review B, 1999, 59, 1661-1664.	1.1	16
335	Simultaneous observation of atomic step and domain wall structure of ultrathin Co films by magnetic force microscopy in ultrahigh vacuum. Applied Physics A: Materials Science and Processing, 1999, 69, 359-361.	1.1	16
336	The physical principles of scanning capacitance spectroscopy. Applied Physics A: Materials Science and Processing, 2001, 72, S243-S251.	1.1	16
337	Impact of intercalated cobalt on the electronic properties of graphene on Pt(111). Physical Review B, 2012, 85, .	1.1	16
338	Symmetry breaking in spin spirals and skyrmions by in-plane and canted magnetic fields. New Journal of Physics, 2016, 18, 075007.	1.2	16
339	Electrical Detection of Domain Walls and Skyrmions in Co Films Using Noncollinear Magnetoresistance. Physical Review Letters, 2019, 123, 237205.	2.9	16
340	Temperature and magnetic field dependent behavior of atomic-scale skyrmions in Pd/Fe/Ir(111) nanoislands. Physical Review B, 2020, 101 , .	1.1	16
341	Friction Force Spectroscopy in the Low-Load Regime with Well-Defined Tips. , 1997, , 233-238.		16
342	Surface step and defect structure of Cr(001) studied by scanning tunneling microscopy. Surface Science, 1990, 235, 1-4.	0.8	15

#	Article	IF	CITATIONS
343	Quantitative aspects of spin-polarized scanning tunneling spectroscopy of Gd(0001). Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1999, 17, 2228-2232.	0.9	15
344	Spin-polarized scanning tunneling spectroscopy of dislocation lines in Fe films on W(110). Journal of Magnetism and Magnetic Materials, 2006, 304, 1-5.	1.0	15
345	Consequences of line defects on the magnetic structure of high anisotropy films: Pinning centers on Dy/W(110). Europhysics Letters, 2006, 76, 637-643.	0.7	15
346	Controlled sequential dehydrogenation of single molecules by scanning tunneling microscopy. Physical Review B, 2010, 82, .	1.1	15
347	Magnetization switching utilizing the magnetic exchange interaction. Physical Review B, 2012, 86, .	1.1	15
348	A theoretical study of the dynamical switching of a single spin by exchange forces. New Journal of Physics, 2013, 15, 013011.	1.2	15
349	Lattice relaxation of Gd on W(110). Surface Science, 2000, 466, 89-96.	0.8	14
350	SpinÂorbit induced local band structure variations revealed by scanning tunnelling spectroscopy. Journal of Physics Condensed Matter, 2003, 15, S679-S692.	0.7	14
351	Direct observation of vortices trapped at stacking fault dislocations inBi2Sr2CaCu2O8by a low-temperature magnetic force microscope. Physical Review B, 2004, 69, .	1.1	14
352	Electronic states of Fe atoms and chains on InAs(110) from scanning tunneling spectroscopy. Physical Review B, 2007, 75, .	1.1	14
353	Revealing Subsurface Vibrational Modes by Atom-Resolved Damping Force Spectroscopy. Physical Review Letters, 2009, 102, 195503.	2.9	14
354	The monomer-to-dimer transition and bimodal growth of Co–salen on NaCl(001): a high resolution atomic force microscopy study. Nanotechnology, 2009, 20, 405608.	1.3	14
355	A millikelvin all-fiber cavity optomechanical apparatus for merging with ultra-cold atoms in a hybrid quantum system. Review of Scientific Instruments, 2017, 88, 023115.	0.6	14
356	Correlation of Yu–Shiba–Rusinov States and Kondo Resonances in Artificial Spin Arrays on an s-Wave Superconductor. Nano Letters, 2021, 21, 6748-6755.	4.5	14
357	Towards skyrmion-superconductor hybrid systems. Physical Review Materials, 2020, 4, .	0.9	14
358	Atomic-Scale Surface Investigations of K _{0.3} MoO ₃ ("Blue Bronzeâ€) by Scanning Tunneling Microscopy. Europhysics Letters, 1990, 12, 241-245.	0.7	13
359	Laser and thermal annealed Si(111) and Si(001) surfaces studied by scanning tunneling microscopy. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1991, 9, 677.	1.6	13
360	Preparation of probe tips with well-defined spherical apexes for quantitative scanning force spectroscopy. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1997, 15, 1527.	1.6	13

#	Article	IF	CITATIONS
361	Electronic structure of Gd and Tb on W(110) in the submonolayer coverage regime studied by STM and STS. Applied Physics A: Materials Science and Processing, 1998, 66, S1121-S1123.	1.1	13
362	Recent progress in high-resolution magnetic imaging using scanning probe techniques. Journal of Physics Condensed Matter, 1999, 11, 9387-9402.	0.7	13
363	Experimental evidence for edge-like states in three-dimensional electron systems. Physical Review B, 2001, 64, .	1.1	13
364	Title is missing!. Journal of Low Temperature Physics, 2003, 131, 993-1002.	0.6	13
365	Domain nucleation and growth of La0.7Ca0.3MnO3â^Î (LaAlO3 films studied by low temperature magnetic force microscopy. Journal of Applied Physics, 2003, 93, 8319-8321.	1.1	13
366	Coverage-dependent spin reorientation transition temperature of the Fe double-layer on W(110) observed by scanning tunneling microscopy. Journal of Magnetism and Magnetic Materials, 2006, 305, 279-283.	1.0	13
367	Magnetostatics and the rotational sense of cycloidal spin spirals. Physical Review B, 2011, 84, .	1.1	13
368	Screening and atomic-scale engineering of the potential at a topological insulator surface. Physical Review B, 2014, 89, .	1.1	13
369	Chemical-specific imaging of multicomponent metal surfaces on the nanometer scale by scanning tunneling spectroscopy. Applied Physics A: Materials Science and Processing, 1996, 62, 571-573.	1.1	12
370	Distance-dependent STM-study of the W(110)/C-R(15 \tilde{A} —3) surface. Zeitschrift F \tilde{A} ½r Physik B-Condensed Matter, 1996, 101, 103-107.	1.1	12
371	Surface electronic structure of $Gd(0001)$ films on $W(110)$. Applied Physics A: Materials Science and Processing, 1997, 65, 603-606.	1.1	12
372	Landau Level Quantization Measured by Scanning Tunneling Spectroscopy on n-InAs(110). Physica Status Solidi (B): Basic Research, 1998, 210, 845-851.	0.7	12
373	Co onp-InAs(110): An island-induced two-dimensional electron system consisting of electron droplets. Physical Review B, 2002, 65, .	1.1	12
374	Coulomb pseudogap caused by partial localization of a three-dimensional electron system in the extreme quantum limit. Physical Review B, 2002, 66, .	1.1	12
375	Fundamental studies of magnetism down to the atomic scale: present status and future perspectives of spin-polarized scanning tunneling microscopy. Journal of Magnetism and Magnetic Materials, 2004, 272-276, 2115-2120.	1.0	12
376	Quantized Spin Waves in Antiferromagnetic Heisenberg Chains. Physical Review Letters, 2008, 101, 177202.	2.9	12
377	Correction of systematic errors in scanning tunneling spectra on semiconductor surfaces: The energy gap of Si(111)-7 \tilde{A} —7at 0.3 K. Physical Review B, 2009, 80, .	1.1	12
378	Towards an understanding of the atomic scale magnetic contrast formation in NC-AFM: a tip material dependent MExFM study on NiO(001). Nanotechnology, 2009, 20, 264017.	1.3	12

#	Article	IF	Citations
379	Wavefunction Mapping of Immobilized InP Semiconductor Nanocrystals. Small, 2009, 5, 808-812.	5.2	12
380	Domain Wall Manipulation with a Magnetic Tip. Physical Review Letters, 2011, 107, 027203.	2.9	12
381	Individual Atomic-Scale Magnets Interacting with Spin-Polarized Field-Emitted Electrons. Physical Review Letters, 2012, 109, 097602.	2.9	12
382	Parity Effects in 120° Spin Spirals. Physical Review Letters, 2014, 112, 047204.	2.9	12
383	Multi-layer and multi-component intercalation at the graphene/Ir(111) interface. Surface Science, 2015, 639, 70-74.	0.8	12
384	Coupling of Coexisting Noncollinear Spin States in the Fe Monolayer on Re(0001). Nano Letters, 2016, 16, 6252-6256.	4.5	12
385	Anisotropic non-split zero-energy vortex bound states in a conventional superconductor. Applied Physics Reviews, 2021, 8, .	5.5	12
386	Coexistence of antiferromagnetism and superconductivity in Mn/Nb(110). Physical Review B, 2022, 105, .	1,1	12
387	Investigation of micromagnetism and magnetic reversal of Ni nanoparticles using a magnetic force microscope. Physics of the Solid State, 1998, 40, 1163-1168.	0.2	11
388	Atomic-Level Control of the Domain Wall Velocity in Ultrathin Magnets by Tuning of Exchange Interactions. Physical Review Letters, 2009, 103, 137202.	2.9	11
389	Quasiantiferromagnetic <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>120</mml:mn><mml:mo>\hat{A}°</mml:mo></mml:mrow></mml:math> N \hat{A}^{\odot} state in two-dimensional clusters of dipole-quadrupole-interacting particles on a hexagonal lattice. Physical Review B, 2009, 80, .	e 1.1	11
390	Strain effects in spinel ferrite thin films from first principles calculations. Journal of Physics: Conference Series, 2011, 292, 012014.	0.3	11
391	Chemical and electronic properties of Fe/MgO/Ge heterostructures for spin electronics. Journal of Physics: Conference Series, 2011, 292, 012010.	0.3	11
392	Role of hybridization in the Rashba splitting of noble metal monolayers on W(110). Physical Review B, 2012, 86, .	1.1	11
393	Structural and magnetic properties of Ni/Fe nanostructures on Ir(111). Physical Review B, 2016, 93, .	1.1	11
394	Nickel: The time-reversal symmetry conserving partner of iron on a chalcogenide topological insulator. Physical Review B, 2016, 94, .	1.1	11
395	Tuning the Properties of Zero-Field Room Temperature Ferromagnetic Skyrmions by Interlayer Exchange Coupling. Nano Letters, 2020, 20, 4739-4747.	4.5	11
396	Friction in the Low-Load Regime: Studies on the Pressure and Direction Dependence of Frictional Forces by Means of Friction Force Microscopy., 1996,, 369-402.		11

#	Article	IF	Citations
397	An ultrahigh vacuum scanning tunneling microscope for surface science studies. Vacuum, 1990, 41, 386-388.	1.6	10
398	Imaging and tunneling spectroscopy of individual iron adsorbates at room temperature. Zeitschrift FÃ 1 /4r Physik B-Condensed Matter, 1995, 99, 143-144.	1.1	10
399	Nanomechanical investigations and modifications of thin films based on scanning force methods. Nanotechnology, 1996, 7, 346-350.	1.3	10
400	An ultrahigh vacuum scanning tunneling microscope for in situ studies of thin-film growth. Review of Scientific Instruments, 1997, 68, 1455-1457.	0.6	10
401	Stick-slip movement of a scanned tip on a graphite surface in scanning force microscopy. Zeitschrift F \tilde{A}^{1} 4r Physik B-Condensed Matter, 1997, 104, 295-297.	1.1	10
402	Surface magnetism at the nanometer and atomic scale. Current Opinion in Solid State and Materials Science, 1999, 4, 435-440.	5.6	10
403	Spin-polarized scanning tunneling spectroscopy on Fe nanowires. Applied Physics A: Materials Science and Processing, 2001, 72, S149-S153.	1.1	10
404	Imaging the switching behavior of superparamagnetic nanoislands by spin-polarized scanning tunneling microscopy. Microscopy Research and Technique, 2005, 66, 117-125.	1.2	10
405	Atomic-resolution three-dimensional force and damping maps of carbon nanotube peapods. Nanotechnology, 2009, 20, 264001.	1.3	10
406	Disposition of the axial ligand in the physical vapor deposition of organometallic complexes. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2010, 28, 795-798.	0.9	10
407	Real space visualization of thermal fluctuations in a triangular flux-line lattice. New Journal of Physics, 2010, 12, 033022.	1.2	10
408	New advances in organic spintronics. Journal of Physics: Conference Series, 2011, 292, 012001.	0.3	10
409	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi>FeS</mml:mi><mml:msub><mml:mmathvariant="normal">e<mml:mrow><mml:mn>0.5</mml:mn></mml:mrow></mml:mmathvariant="normal"></mml:msub><mml:mi mathvariant="normal">T</mml:mi><mml:msub><mml:mi mathvariant="normal">e</mml:mi><mml:mrow><mml:mn>0.5</mml:mn></mml:mrow></mml:msub></mml:mrow> <td>1.1</td> <td>10</td>	1.1	10
410	Structural and electronic properties of ultrathin FeSe films grown on Bi ₂ Se ₃ (0 0 0 1) studied by STM/STS. Journal of Physics Condensed Matter 29, 025004.		10
411	Effective damping enhancement in noncollinear spin structures. Physical Review B, 2018, 98, .	1.1	10
412	Scanning Seebeck tunneling microscopy. Journal Physics D: Applied Physics, 2018, 51, 324001.	1.3	10
413	The Structure of Rapidly Quenched Metals as Studied by Scanning Tunneling Microscopy*. Zeitschrift Fur Physikalische Chemie, 1988, 157, 139-143.	1.4	9
414	An ultrahigh vacuum scanning tunneling microscope for the investigation of clean surfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1990, 8, 339-344.	0.9	9

#	Article	IF	CITATIONS
415	Comparative study of different tip materials for surface modification by the scanning tunneling microscope. Nanotechnology, 1992, 3, 77-83.	1.3	9
416	Low-load friction behavior of epitaxial C60 monolayers. Zeitschrift FÃ $\frac{1}{4}$ r Physik B-Condensed Matter, 1995, 99, 1-2.	1.1	9
417	Spin-resolved spectro-microscopy of magnetic nanowire arrays. Surface Science, 2002, 514, 135-144.	0.8	9
418	Spin-polarized scanning tunneling microscopy: Insight into magnetism from nanostructures to atomic scale spin structures. Microscopy Research and Technique, 2005, 66, 61-71.	1.2	9
419	Multipole moments of in-plane magnetized disks. Journal of Applied Physics, 2005, 97, 10J502.	1.1	9
420	Complex magnetic order on the atomic scale revealed by spin-polarized scanning tunnelling microscopy. Philosophical Magazine, 2008, 88, 2627-2642.	0.7	9
421	Miniaturized transportable evaporator for molecule deposition inside cryogenic scanning probe microscopes. Review of Scientific Instruments, 2010, 81, 053902.	0.6	9
422	Temperature-Induced Increase of Spin Spiral Periods. Physical Review Letters, 2017, 119, 037202.	2.9	9
423	Probing Weakly Hybridized Magnetic Molecules by Single-Atom Magnetometry. Nano Letters, 2019, 19, 9013-9018.	4.5	9
424	A radio-frequency spin-polarized scanning tunneling microscope. Review of Scientific Instruments, 2019, 90, 123705.	0.6	9
425	Stacking-Dependent Spin Interactions in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Pd</mml:mi><mml:mo>/</mml:mo><mml:mi>Fe</mml:mi></mml:math> Bilayers on Re(0001). Physical Review Letters, 2020, 125, 227205.	2.9	9
426	Surface structure of graphite intercalation compounds resolved in real space by scanning tunneling microscopy. Synthetic Metals, 1989, 34, 175-185.	2.1	8
427	Scanning tunneling microscopy with spin-polarized electrons. European Physical Journal B, 1990, 80, 5-6.	0.6	8
428	Correlation Between Nanoscale Structural, Electronic, and Magnetic Properties of Thin Films by Scanning-Probe Microscopy and Spectroscopy. MRS Bulletin, 1997, 22, 31-35.	1.7	8
429	Magnetostatic interaction studied by force microscopy in ultrahigh vacuum. Applied Physics A: Materials Science and Processing, 1997, 64, 353-355.	1.1	8
430	Thickness-dependent magnetic domain structures of ultrathin Co/Au(111) films studied by means of magnetic force microscopy in ultrahigh vacuum. Applied Physics A: Materials Science and Processing, 1998, 66, 465-467.	1,1	8
431	Evaluating local properties of magnetic tips utilizing an antiferromagnetic surface. Physical Review B, 2008, 78, .	1.1	8
432	The effects of Mn concentration on structural and magnetic properties of Ge _{1â^x} Mn _x diluted magnetic semiconductors. Journal of Physics: Conference Series, 2011, 292, 012012.	0.3	8

#	Article	IF	CITATIONS
433	Micromagnetic description of the spin spiral in Fe double-layer stripes on W(110). Physical Review B, 2012, 85, .	1.1	8
434	Manipulation of domain walls using a spin-polarized STM. Europhysics Letters, 2012, 97, 17009.	0.7	8
435	Atomic-scale magnetic dissipation from spin-dependent adhesion hysteresis. Physical Review B, 2012, 85,	1.1	8
436	High-frequency magnetization dynamics of individual atomic-scale magnets. Physical Review B, 2016, 93,	1.1	8
437	Spin-sensitive shape asymmetry of adatoms on noncollinear magnetic substrates. Physical Review B, 2016, 93, .	1.1	8
438	Domain imaging across the magneto-structural phase transitions in Fe1+yTe. Npj Quantum Materials, 2018, 3, .	1.8	8
439	Surface State of $Gd(0001)$ Films on $W(110)$: Scanning Tunneling Spectroscopy Study. Acta Physica Polonica A, 1998, 93, 273-280.	0.2	8
440	Physik in unserer Zeit auf der Nanometerskala. Physik in Unserer Zeit, 1995, 26, 206-216.	0.0	7
441	Topographical structure of the domain boundary on the triglycine sulfate (010) surface. Ferroelectrics, 1997, 200, 327-341.	0.3	7
442	Local Electronic Properties in the Presence of Internal and External Magnetic Fields Studied by Variable-Temperature Scanning Tunneling Spectroscopy. Japanese Journal of Applied Physics, 1998, 37, 3769-3773.	0.8	7
443	GdFe2alloy formation studied on the atomic scale by scanning tunneling microscopy. Physical Review B, 1999, 60, 16109-16113.	1.1	7
444	Co double-layer nanostructures on Pt(111) studied by spin-polarized scanning tunnelling microscopy. Journal Physics D: Applied Physics, 2007, 40, 1306-1311.	1.3	7
445	Principles and Applications of the qPlus Sensor. Nanoscience and Technology, 2009, , 121-142.	1.5	7
446	Spin-spin correlations in ferromagnetic nanosystems. European Physical Journal B, 2011, 80, 331-336.	0.6	7
447	Magnetic coupling of single Co adatoms to a Co underlayer through a Pd spacer of variable thickness. Physical Review B, 2012, 86, .	1.1	7
448	Non-equilibrium finite temperature dynamics of magnetic quantum systems: applications to spin-polarized scanning tunneling microscopy. New Journal of Physics, 2013, 15, 013009.	1.2	7
449	Tailoring noncollinear magnetism by misfit dislocation lines. Physical Review B, 2016, 94, .	1.1	7
450	Quantum revivals and magnetization tunneling in effective spin systems. New Journal of Physics, 2016, 18, 033029.	1.2	7

#	Article	IF	CITATIONS
451	Electronic structure of Fe _{1.08} Te bulk crystals and epitaxial FeTe thin films on Bi ₂ Te ₃ . Journal of Physics Condensed Matter, 2018, 30, 065502.	0.7	7
452	Enhanced spin-ordering temperature in ultrathin FeTe films grown on a topological insulator. Physical Review B, 2018, 97, .	1.1	7
453	Discovery and characterization of a new type of domain wall in a row-wise antiferromagnet. Nature Communications, 2021, 12, 3488.	5.8	7
454	Zero-field skyrmionic states and in-field edge-skyrmions induced by boundary tuning. Communications Physics, 2022, 5, .	2.0	7
455	Scanning tunneling microscopy of a thin film of Pd2Si on a Si(100) substrate. Surface Science, 1987, 181, 313-323.	0.8	6
456	Physical properties of icosahedral and glassy Pdî—¸Uî—¸Si alloys. Materials Science and Engineering, 1988, 99, 357-360.	0.1	6
457	Data processing for scanning tunneling microscopy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1988, 6, 393-397.	0.9	6
458	Bubble domains in garnet films studied by magnetic force microscopy. Journal of Applied Physics, 1995, 78, 6324-6326.	1.1	6
459	Scanning capacitance microscopy and spectroscopy applied to local charge modifications and characterization of nitride-oxide-silicon heterostructures. Applied Physics A: Materials Science and Processing, 1995, 61, 357-362.	1.1	6
460	Load-dependent topographic and friction studies of individual ion tracks in layered materials by scanning force microscopy and lateral force microscopy. Physical Review B, 1996, 53, R16180-R16183.	1.1	6
461	Application of scanning probe methods for electronic and magnetic device fabrication, characterization, and testing. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1996, 14, 3625.	1.6	6
462	Studies of magnetic properties of small particles by electron holography. Applied Physics A: Materials Science and Processing, 1997, 65, 361-366.	1.1	6
463	Investigation of ripple structures of thin polycrystalline Co films by magnetic force microscopy. Applied Physics A: Materials Science and Processing, 1997, 65, 511-515.	1.1	6
464	Comparative study of MeV C[sup +] and C[sub 2][sup +] ion implantation in GaAs(100): Surface roughness and evaluation of lattice strain. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2003, 21, 1134.	1.6	6
465	Dynamic force spectroscopy across an individual strongly pinned vortex in a Bi2Sr2CaCu2O8+δ single crystal. Applied Physics Letters, 2004, 85, 5307-5309.	1.5	6
466	Recent advances in spin-polarized scanning tunneling microscopy. Applied Physics A: Materials Science and Processing, 2004, 78, 781-785.	1.1	6
467	Controlled preparation of a magnetic thin film alloy: GdFe2 and GdFe3. Surface Science, 2004, 566-568, 236-240.	0.8	6
468	Tilted magnetization of a La0.7Sr0.3MnO3/LaAlO3 (001) thin film. Journal of Magnetism and Magnetic Materials, 2004, 280, 51-59.	1.0	6

#	Article	IF	Citations
469	Mapping spin structures on the atomic scale. Europhysics News, 2007, 38, 16-21.	0.1	6
470	Entropy driven phase transition in itinerant antiferromagnetic monolayers. Physical Review B, 2008, 77, .	1.1	6
471	Nanoscale spin structures dominated by magnetoelastic interactions around dislocation cores as seen via spin-polarized STM. Physical Review B, 2009, 80, .	1.1	6
472	Three-electrode self-actuating self-sensing quartz cantilever: Design, analysis, and experimental verification. Review of Scientific Instruments, 2010, 81, 053702.	0.6	6
473	Experimental variation and theoretical analysis of the inelastic contribution to atomic spin excitation spectroscopy. Physical Review B, 2011, 83, .	1.1	6
474	Spin-resolved imaging and spectroscopy of individual molecules with sub-molecular spatial resolution. MRS Bulletin, 2014, 39, 608-613.	1.7	6
475	Attractive force-driven superhardening of graphene membranes as a pin-point breaking of continuum mechanics. Scientific Reports, 2017, 7, 46083.	1.6	6
476	Rotating edge-field driven processing of chiral spin textures in racetrack devices. Scientific Reports, 2020, 10, 20400.	1.6	6
477	Scanning capacitance microscopy and spectroscopy applied to local charge modifications and characterization of nitride?oxide?silicon heterostructures. Applied Physics A: Materials Science and Processing, 1995, 61, 357-362.	1.1	6
478	STM and AFM investigations of highâ€∢i>T _c superconductors. Journal of Microscopy, 1988, 152, 399-405.	0.8	5
479	Scanning tunneling microscopy on laser- and thermal-annealed Si(111): transitions from 7 \tilde{A} — 7 reconstructed to disordered surface structures. Ultramicroscopy, 1990, 32, 291-295.	0.8	5
480	Recent advances in spin-polarized scanning tunneling microscopy. Ultramicroscopy, 1992, 42-44, 338-344.	0.8	5
481	Scanning tunneling microscopy study of ternary alkali-metal graphite intercalation compounds. Ultramicroscopy, 1992, 42-44, 624-629.	0.8	5
482	Tunnelspektroskopie vom Einzelatom zum Festkörper. Physik Journal, 1996, 52, 551-554.	0.1	5
483	Ultra-high-vacuum magnetic force microscopy of the domain structure of ultra-thin Co films. Applied Physics A: Materials Science and Processing, 1998, 66, S1209-S1212.	1.1	5
484	GdFe2 alloy formation observed by STM. Applied Surface Science, 1999, 142, 543-548.	3.1	5
485	New insight into the surface magnetic properties of Gd(0001). Applied Surface Science, 1999, 142, 558-563.	3.1	5
486	Growth and magnetism of Fe on Cr(001): a spin-polarized scanning tunneling spectroscopy and magnetic force microscopy study. Applied Physics A: Materials Science and Processing, 2005, 80, 907-912.	1.1	5

#	Article	IF	CITATIONS
487	Atomic-Resolution Dynamic Force Microscopy/Spectroscopy of Individual Single-Walled Carbon Nanotube. Japanese Journal of Applied Physics, 2006, 45, 2286-2289.	0.8	5
488	Observation of the flux-antiflux boundary propagation during magnetization reversal in Bi2Sr2CaCu2O8+l^ with single vortex resolution. Applied Physics Letters, 2006, 88, 012507.	1.5	5
489	Multipole moments of general ellipsoids with two polarized domains. Journal of Physics A: Mathematical and Theoretical, 2007, 40, 14791-14802.	0.7	5
490	Investigating the differences between Co adatoms states on surfaces of selected bismuth chalcogenides. Physical Review B, 2015, 92, .	1.1	5
491	Bounds on expectation values of quantum subsystems and perturbation theory. Journal of Physics A: Mathematical and Theoretical, 2015, 48, 075301.	0.7	5
492	Temperature and non-linear response of cantilever-type mechanical oscillators used in atomic force microscopes with interferometric detection. Applied Physics Letters, 2015, 106, .	1.5	5
493	Tunneling into thin superconducting films: Interface-induced quasiparticle lifetime reduction. Surface Science, 2016, 643, 6-9.	0.8	5
494	Perturbative calculations of quantum spin tunneling in effective spin systems with a transversal magnetic field and transversal anisotropy. New Journal of Physics, 2017, 19, 013032.	1.2	5
495	Vacuum Resonance States as Atomic-Scale Probes of Noncollinear Surface Magnetism. Physical Review Letters, 2019, 123, 087202.	2.9	5
496	Atomically resolved magnetic structure of a Gd-Au surface alloy. Physical Review B, 2019, 99, .	1.1	5
497	Real-space imaging of atomic-scale spin textures at nanometer distances. Applied Physics Letters, 2020, 116, 122406.	1.5	5
498	Force Spectroscopy on Semiconductor Surfaces. Nanoscience and Technology, 2009, , 31-68.	1.5	5
499	Growth stages of YSZ-buffer layers and YBa2Cu3O7?x thin films on silicon substrates studied by scanning probe microscopy. Applied Physics A: Solids and Surfaces, 1994, 59, 57-62.	1.4	4
500	Scanning-probe-based science and technology. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 12749-12750.	3.3	4
501	Fabrication of atomic gratings based on self-organization of adsorbates with repulsive interaction. Applied Physics A: Materials Science and Processing, 1997, 65, 81-83.	1.1	4
502	The adsorption process of hydrogen on Gd(0001). Applied Surface Science, 1999, 142, 63-67.	3.1	4
503	Coadsorption of H and CO on Gd(0001). Applied Surface Science, 1999, 142, 428-432.	3.1	4
504	SPIN-POLARIZED VACUUM TUNNELING: CORRELATION OF ELECTRONIC AND MAGNETIC PROPERTIES ON THE NANOMETER SCALE. Surface Review and Letters, 1999, 06, 591-597.	0.5	4

#	Article	IF	CITATIONS
505	Surface morphology of MgO (100) crystals implanted with MeV Al+ and Al2+ ions. Applied Physics A: Materials Science and Processing, 2001, 73, 265-271.	1.1	4
506	Lattice-dependent anisotropy in the orientation of magnetic domain walls. Journal of Magnetism and Magnetic Materials, 2005, 290-291, 746-749.	1.0	4
507	Growth of Cr on Ir(111) studied by scanning tunneling microscopy. Surface Science, 2006, 600, 1034-1039.	0.8	4
508	Visualizing flux distribution of superconductors in external magnetic fields with magnetic force microscopy. Physical Review B, 2006, 73, .	1.1	4
509	Hydrogen-related contrast in atomic force microscopy. Nanotechnology, 2009, 20, 264007.	1.3	4
510	A multi-scale model of domain wall velocities based on ab initio parameters. Philosophical Magazine, 2011, 91, 2248-2262.	0.7	4
511	Set-up of a high-resolution 300 mK atomic force microscope in an ultra-high vacuum compatible 3He/10 T cryostat. Review of Scientific Instruments, 2016, 87, 073702.	0.6	4
512	Atomic-Site-Specific Analysis on Out-of-Plane Elasticity of Convexly Curved Graphene and Its Relationship to	1.0	4
513	A cavity optomechanical locking scheme based on the optical spring effect. Review of Scientific Instruments, 2020, 91, 103102.	0.6	4
514	<i>In Situ</i> Synthesis of Metal–Salophene Complexes on Intercalated Graphene. Journal of Physical Chemistry C, 2020, 124, 4279-4287.	1.5	4
515	STM on Layered Materials. Springer Series in Surface Sciences, 1994, , 131-179.	0.3	4
516	Anisotropy of sliding friction on the triglycine sulfate (010) surface. Applied Physics A: Materials Science and Processing, 1995, 61, 525-533.	1.1	4
517	Spin-Polarized STM Investigation of Magnetic Domain Walls. Acta Physica Polonica A, 2003, 104, 259-268.	0.2	4
518	Structural and superconducting properties of ultrathin Ir films on Nb(110). Physical Review Materials, 2022, 6, .	0.9	4
519	Complex magnetic ground states and topological electronic phases of atomic spin chains on superconductors. Physical Review B, 2022, 105, .	1.1	4
520	Topological Characterization of Dynamic Chiral Magnetic Textures Using Machine Learning. Physical Review Applied, 2022, 17, .	1.5	4
521	Icosahedral alloys studied by scanning tunneling microscopy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1988, 6, 529-530.	0.9	3
522	Spin-Polarized Scanning Tunneling Microscopy (SPSTM). Materials Research Society Symposia Proceedings, 1991, 231, 37.	0.1	3

#	Article	IF	Citations
523	Determination of miller indices of side faces of small crystallites from scanning force microscopy angle measurements. Surface and Interface Analysis, 1995, 23, 409-415.	0.8	3
524	Nanofabrication of weak links based on scanning force methods. Applied Physics A: Materials Science and Processing, 1996, 62, 289-292.	1.1	3
525	Novel 'writing' using magnetic force microscopy in ultrahigh vacuum. IEEE Transactions on Magnetics, 1997, 33, 4050-4052.	1.2	3
526	Analysis of electrical breakdown failures by means of SFM-based methods. Applied Physics A: Materials Science and Processing, 1998, 66, S1063-S1065.	1.1	3
527	Spin-Polarized Scanning Tunneling Microscopy. Nanoscience and Technology, 1998, , 71-95.	1.5	3
528	Spin-Polarized Scanning Tunneling Spectroscopy. Nanoscience and Technology, 2005, , 203-223.	1.5	3
529	Introduction: Fifteen years of spin-polarized scanning tunneling microscopy. Microscopy Research and Technique, 2005, 66, 59-60.	1.2	3
530	Anisotropic superexchange in one-dimensional Fe-chains on InAs(110). Surface Science, 2008, 602, 3297-3302.	0.8	3
531	Two dimensional electron gas confined over a spherical surface: Magnetic moment. Journal of Physics: Conference Series, 2011, 292, 012005.	0.3	3
532	One-pot synthesis of Fe-Co nanospheres by modified polyol process and their structural, magnetic studies. Journal of Physics: Conference Series, 2011, 292, 012015.	0.3	3
533	The Effect of a Pulsed Magnetic Field on Domain Wall Resistance in Magnetic Nanowires. Journal of Physics: Conference Series, 2011, 292, 012009.	0.3	3
534	Pb-induced skyrmions in a double layer of Fe on Ir(111). Physical Review B, 2018, 98, .	1.1	3
535	Anomalous Flexural Elasticities of Graphene Membranes Unveiled by Manipulating Topology. Physical Review Letters, 2021, 126, 146101.	2.9	3
536	Spin-spiral state of a Mn monolayer on $W(110)$ studied by soft x-ray absorption spectroscopy at variable temperature. Physical Review B, 2021, 103, .	1.1	3
537	Surface orbital order and chemical potential inhomogeneity of the iron-based superconductor FeTeO.55SeO.45 investigated with special STM tips. Physical Review Research, 2021, 3, .	1.3	3
538	Nanoscale skyrmions on a square atomic lattice. Physical Review B, 2022, 105, .	1.1	3
539	Advances in STM Design and Instrumentation. Europhysics News, 1990, 21, 72-73.	0.1	2
540	Local transformation of C60 fullerite into a new amorphous phase of carbon using a scanning tunneling microscope. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1994, 12, 2136.	1.6	2

#	Article	IF	CITATIONS
541	Magnetic force microscopy study of magnetic stray-field effects due to mechanical surface modifications of patterned Permalloy thin films. Applied Physics A: Materials Science and Processing, 1995, 61, 93-97.	1.1	2
542	Fabrication of atomic wires based on self-organization. Applied Physics A: Materials Science and Processing, 1996, 63, 303-304.	1.1	2
543	1965/66/Whitaker: Einstein, Bohr and the Quantum Dilemma/Wick: The Infamous Boundary/Hartnagel, Dawar: Semiconducting Transparent Thin Films/Atkins: Physikalische Chemie/Atkins, Trapp: Arbeitsbuch Physikalische Chemie/Magonov, Whangbo: Surface Analysis with STM and AFM/Lehn: Supramolecular Chemistry/Braun, Kalinowski, Berger: 100 and More Basic NMR Experiments, A Practical	0.1	2
544	Domain structure of Co/Pt multilayers studied by magnetic force microscopy. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1996, 14, 1214.	1.6	2
545	Determination of radial matrix elements and phase shifts in photoemission with a rotatable electric-field vector. Physical Review B, 1998, 58, 9681-9684.	1.1	2
546	PREPARATION OF HIGHLY ORDERED GdFe2 ALLOYS. Surface Review and Letters, 1999, 06, 741-745.	0.5	2
547	Subsurface interstitials as promoters of three-dimensional growth of Ti on Si(111): An x-ray standing wave, x-ray photoelectron spectroscopy, and atomic force microscopy investigation. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2002, 20, 1997.	0.9	2
548	A cryogenic scanning force microscope for the characterization of frozen biological samples. Applied Physics A: Materials Science and Processing, 2003, 76, 893-898.	1.1	2
549	Contributions of the escape depth to the photoelectron intensity of a well-defined initial state. Physical Review B, 2004, 70, .	1.1	2
550	Imaging Atomic-Scale Spin Structures. Imaging & Microscopy, 2007, 9, 21-24.	0.1	2
551	Scanning Tunneling Spectroscopy of Semiconductor Quantum Dots and Nanocrystals. Nanoscience and Technology, 2010, , 183-216.	1.5	2
552	Adsorption Behavior of Asymmetric Pd Pincer Complexes on a Cu(111) Surface. Langmuir, 2010, 26, 10868-10871.	1.6	2
553	Understanding the Room Temperature Ferromagnetism in GaN Nanowires with Pd Doping. Journal of Physics: Conference Series, 2011, 292, 012013.	0.3	2
554	Heat treatment of mechano-chemically produced BaFe12O19/Fe3O4magnetic nano-composites. Journal of Physics: Conference Series, 2011, 292, 012016.	0.3	2
555	Non-collinear magnetic order in nanostructures investigated by spin-polarized scanning tunneling microscopy. Pure and Applied Chemistry, 2011, 83, 1981-1988.	0.9	2
556	Collective magnetism in arrays of spinor Bose–Einstein condensates. New Journal of Physics, 2013, 15, 063033.	1.2	2
557	Miniaturized high-precision piezo driven two axes stepper goniometer. Review of Scientific Instruments, 2014, 85, 045006.	0.6	2
558	STM study of the preparation of clean Ta(110) and the subsequent growth of two-dimensional Fe islands. Surface Science, 2016, 653, 113-117.	0.8	2

#	Article	IF	CITATIONS
559	Characterizing tips suitable for atomic force microscopy and spectroscopy with atomic resolution and spin sensitivity. Applied Physics Letters, 2017, 110, .	1.5	2
560	Tuning noncollinear magnetic states by hydrogenation. Physical Review B, 2019, 99, .	1.1	2
561	Precise measurement of the configurational energy of bent graphene membranes via three-dimensional force field spectroscopy. Physical Review B, 2021, 104, .	1.1	2
562	Biological Applications of FM-AFM in Liquid Environment. Nanoscience and Technology, 2009, , 329-345.	1.5	2
563	Tip–Sample Interactions as a Function of Distance on Insulating Surfaces. Nanoscience and Technology, 2009, , 69-94.	1.5	2
564	Scanning Tunneling Spectroscopy on Ill–V Materials: Effects of Dimensionality, Magnetic Field, and Magnetic Impurities. Nanoscience and Technology, 2010, , 217-243.	1.5	2
565	STM and AFM Studies of Layered Materials: General. Physics and Chemistry of Materials With Low-dimensional Structures, 1992, , 1-26.	1.0	2
566	Atomically thin oxide layer on the elemental superconductor $Ta(001)$ surface. Physical Review Materials, 2019, 3, .	0.9	2
567	Scanning tunneling and scanning electron microscopy investigations of nonuniform surfaces. Ultramicroscopy, 1988, 25, 129-133.	0.8	1
568	Tunneling of Spin-Polarized Electrons. AIP Conference Proceedings, 1991, , .	0.3	1
569	Scanning tunneling microscopy study of granular (MTl1.5)3C60 (M = K, Rb). Physica B: Condensed Matter, 1992, 182, 223-226.	1.3	1
570	STM on doped and undoped hydrogenated amorphous and microcrystalline silicon films. Ultramicroscopy, 1992, 42-44, 1398-1402.	0.8	1
571	Nano-scale studies of quantum phenomena by scanning probe spectroscopy. Annalen Der Physik, 2000, 9, 895-904.	0.9	1
572	Influence of potential fluctuations on Landau quantization and spin splitting studied by low temperature scanning tunneling spectroscopy on $lnAs(110)$. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002, 20, 2032.	1.6	1
573	Comparing measured and calculated local density of states in a disordered two-dimensional electron system. Physica B: Condensed Matter, 2003, 329-333, 1536-1537.	1.3	1
574	Comparing the local density of states of three- and two-dimensional electron systems by low-temperature scanning tunneling spectroscopy. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 16, 121-128.	1.3	1
575	Visualizing the Influence of Interactions on the Nanoscale: Simple Electron Systems. AIP Conference Proceedings, 2003, , .	0.3	1
576	Low Density Two-Dimensional Electron Systems Studied by Scanning Tunneling Spectroscopy. Japanese Journal of Applied Physics, 2003, 42, 4809-4815.	0.8	1

#	Article	IF	Citations
577	Magnetismus mit Dreh. Spinspiralen an OberflÄghen. Physik in Unserer Zeit, 2008, 39, 93-97.	0.0	1
578	Metal-insulator transition in graphite: A comparison to heterostructures with high carrier mobility. Technical Physics Letters, 2008, 34, 30-33.	0.2	1
579	Cantilever Dynamics and Nonlinear Effects in Atomic Force Microscopy. Nanoscience and Technology, 2009, , 361-395.	1.5	1
580	Method for Precise Force Measurements. Nanoscience and Technology, 2009, , 15-30.	1.5	1
581	Critical current density of domain wall oscillation due to spin-transfer torque. Journal of Physics: Conference Series, 2011, 292, 012007.	0.3	1
582	Real-space mapping of a disordered two-dimensional electron system in the quantum Hall regime. Journal of Physics: Conference Series, 2011, 334, 012008.	0.3	1
583	Reply to Comment on Perturbative calculations of quantum spin tunneling in effective spin systems with a transversal magnetic field and transversal anisotropy. New Journal of Physics, 2017, 19, 078001.	1.2	1
584	Magnetic domain walls in strain-patterned ultrathin films. Physical Review B, 2018, 98, .	1.1	1
585	Nanoscience and Nanotechnology at the Centennial of UniversitäHamburg. ACS Nano, 2019, 13, 1-3.	7.3	1
586	Phonon-mediated tunneling into a two-dimensional electron gas on the Be(0001) surface. Physical Review B, 2021, 103 , .	1.1	1
587	Magnetic-Sensitive Scanning Probe Microscopy. NATO ASI Series Series B: Physics, 1993, , 45-54.	0.2	1
588	Contributions of Scanning Tunneling Microscopy for Probing and Manipulating Electronic Properties in Low Dimensions. Springer Series in Solid-state Sciences, 1992, , 97-107.	0.3	1
589	Surface Electronic Properties of Fe Nanoparticles on c(2×2)-N/Cu(001). Acta Physica Polonica A, 2003, 104, 327-335.	0.2	1
590	Force Field Spectroscopy in Three Dimensions. Nanoscience and Technology, 2009, , 95-119.	1.5	1
591	Basic Mechanisms for Single Atom Manipulation in Semiconductor Systems with the FM-AFM. Nanoscience and Technology, 2009, , 227-249.	1.5	1
592	Spectroscopic signature of the Stark-shifted Tamm-type surface state of La(0001). New Journal of Physics, 2020, 22, 093013.	1.2	1
593	Controlled growth of Gd-Pt surface alloys on Pt(111). Physical Review B, 2022, 105, .	1.1	1
594	The effect of argon ion sputtering on a polycrystalline film of Pd2Si on a Si substrate studied by scanning tunneling microscopy and photoelectron spectroscopy. Nuclear Instruments & Methods in Physics Research B, 1986, 18, 644-650.	0.6	0

#	Article	IF	CITATIONS
595	From Point Defects to Amorphous Structures: Atomic Resolution Studies of Semiconductor Surfaces by Scanning Tunneling Microscopy (STM). Materials Research Society Symposia Proceedings, 1990, 183, 237.	0.1	О
596	Novel 'Writing' By Using Magnetic Force Microscopy In UHV. , 0, , .		0
597	Tieftemperaturâ€Rastertunnelspektroskopie an InAs(110): Streuung von Elektronenwellen an Dotieratomen und Spektroskopie an Landauâ€Niveaus. Physik Journal, 1998, 54, 423-426.	0.1	O
598	Neue Perspektiven: Die Tieftemperaturâ€Rastersondenâ€Spektroskopie eröffnet den direkten Zugang zu mikroskopischen Festkörpereigenschaften. Physik Journal, 1998, 54, 417-417.	0.1	0
599	Dynamic Scanning Force Microscopy at Low Temperatures. Japanese Journal of Applied Physics, 2000, 39, 3701-3706.	0.8	0
600	Nano-scale studies of quantum phenomena by scanning probe spectroscopy. Vacuum, 2002, 65, 235-236.	1.6	0
601	Frozen hydrated bloc-face investigation of tissue for Cryo SEM. Microscopy and Microanalysis, 2003, 9, 504-505.	0.2	0
602	Frozen hydrated bloc-face investigation of tissue for Cryo SEM. Microscopy and Microanalysis, 2003, 9, 1546-1547.	0.2	0
603	Title is missing!. Applied Surface Science, 2004, 235, 1.	3.1	0
604	Modulated multipolar structures in magnetic arrays. Philosophical Magazine, 2008, 88, 2683-2697.	0.7	0
605	Magnetoelastic Effects in Nanostructures. Solid State Phenomena, 0, 168-169, 177-184.	0.3	0
606	An approach for automated scale invariant STM-scan matching using SIFT., 2010,,.		0
607	Modeling thermally activated domain wall dynamics in thin magnetic strips with disorder. Journal of Physics: Conference Series, 2011, 292, 012008.	0.3	0
608	Logik aus atomaren Spins. Physik in Unserer Zeit, 2011, 42, 162-163.	0.0	0
609	Magnetic anisotropy of (Ge,Mn) nanostructures. Journal of Physics: Conference Series, 2011, 292, 012011.	0.3	0
610	Atomic-Scale Spintronics. , 2013, , 1-24.		0
611	Revealing Subsurface Vibrational Modes by Atomic-Resolution Damping Force Spectroscopy. Nanoscience and Technology, 2015, , 127-145.	1.5	0
612	Magnetic Spectroscopy of Individual Atoms, Chains and Nanostructures. Nanoscience and Technology, 2018, , 3-24.	1.5	0

#	Article	IF	CITATIONS
613	Non-collinear Magnetism Studied with Spin-Polarized Scanning Tunneling Microscopy. Nanoscience and Technology, 2018, , 163-182.	1.5	0
614	Magnetization Dynamics on the Atomic Scale. Nanoscience and Technology, 2018, , 221-248.	1.5	0
615	Step-Edge-Induced Anisotropic Chiral Spin Coupling in Ultrathin Magnetic Films. Physical Review Letters, 2019, 123, 037201.	2.9	O
616	Disorder-induced time effect in the antiferromagnetic domain state of Fe1+Te. Journal of Magnetism and Magnetic Materials, 2021, 540, 168426.	1.0	0
617	Investigation of the Mechanics of Nanocontacts Using a Vibrating Cantilever Technique. , 2001, , 151-169.		0
618	Atomic Manipulation on Metal Surfaces. Nanoscience and Technology, 2009, , 191-215.	1.5	0
619	High-Frequency Low Amplitude Atomic Force Microscopy. Nanoscience and Technology, 2009, , 347-360.	1.5	0
620	Magnetic Exchange Force Microscopy. Nanoscience and Technology, 2009, , 275-286.	1.5	0
621	Atom Manipulation on Semiconductor Surfaces. Nanoscience and Technology, 2009, , 169-190.	1.5	0
622	Multi-Scale Modelling of NC-AFM Imaging and Manipulation at Insulating Surfaces. Nanoscience and Technology, 2009, , 251-273.	1.5	0
623	Study of Thin Oxide Films with NC-AFM: Atomically Resolved Imaging and Beyond. Nanoscience and Technology, 2009, , 143-167.	1.5	0
624	First-Principles Simulation of Magnetic Exchange Force Microscopy on Fe/W (001). Nanoscience and Technology, 2009, , 287-301.	1.5	0
625	Frequency Modulation Atomic Force Microscopy in Liquids. Nanoscience and Technology, 2009, , 303-328.	1.5	0
626	10.1007/s11455-008-1009-7. , 2010, 34, 30.		0
627	Physical Properties of Icosahedral and Glassy Pd–U–Si Alloys. , 1988, , 357-360.		0
628	Surface modification in the nanometer range by the scanning tunneling microscope. Perspectives in Condensed Matter Physics, 1988, , 258-260.	0.1	0
629	Surface Structure of Metallic Glasses Studied by Scanning Tunneling Microscopy. Springer Series in Surface Sciences, 1988, , 595-600.	0.3	0
630	Investigation of the Microstructure of an Fe91Zr9 Catalyst Prepared from the Amorphous Alloy. , 1988, , 501-505.		0

#	Article	IF	CITATIONS
631	Atomic-Scale Imaging and Modification of Spins Using a Magnetic-Sensitive Scanning Tunneling Microscope., 1993,, 65-73.		0
632	Recent Developments in Scanning Tunneling Microscopy. Acta Physica Polonica A, 1993, 84, 419-421.	0.2	0
633	Scanning Tunneling Microscopy and Atomic Force Microscopy on Charge Density Wave and Related Materials. NATO ASI Series Series B: Physics, 1996, , 229-239.	0.2	0
634	Simulation of the Scan Process in Friction Force Microscopy., 1997,, 379-384.		0
635	Recent Advances in Spin-Polarized Scanning Tunneling Spectroscopy for Imaging of Magnetic Domains. Journal of the Magnetics Society of Japan, 1999, 23, S1_195-200.	0.4	0
636	Atomic-Scale Spintronics., 2016,, 757-784.		0
637	Spin mapping on the atomic scale. , 2008, , 711-712.		0
638	Magnetic force microscopy study of magnetic stray-field effects due to mechanical surface modifications of patterned Permalloy thin films. Applied Physics A: Materials Science and Processing, 1995, 61, 93-97.	1.1	0
639	Nanofabrication of weak links based on scanning force methods. Applied Physics A: Materials Science and Processing, 1996, 62, 289-292.	1.1	0
640	Fabrication of atomic wires based on self-organization. Applied Physics A: Materials Science and Processing, 1996, 63, 303-304.	1.1	0