

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2620449/publications.pdf Version: 2024-02-01

VINC YAO

#	Article	IF	CITATIONS
1	Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects. Chemical Reviews, 2020, 120, 7020-7063.	47.7	957
2	A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Critical Reviews in Environmental Science and Technology, 2016, 46, 406-433.	12.8	945
3	Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere, 2012, 89, 1467-1471.	8.2	713
4	Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresource Technology, 2012, 110, 50-56.	9.6	627
5	Engineered Biochar Reclaiming Phosphate from Aqueous Solutions: Mechanisms and Potential Application as a Slow-Release Fertilizer. Environmental Science & Technology, 2013, 47, 8700-8708.	10.0	595
6	Biochar derived from anaerobically digested sugar beet tailings: Characterization and phosphate removal potential. Bioresource Technology, 2011, 102, 6273-6278.	9.6	495
7	Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings. Journal of Hazardous Materials, 2011, 190, 501-507.	12.4	471
8	Engineered carbon (biochar) prepared by direct pyrolysis of Mg-accumulated tomato tissues: Characterization and phosphate removal potential. Bioresource Technology, 2013, 138, 8-13.	9.6	257
9	Adsorption of sulfamethoxazole on biochar and its impact on reclaimed water irrigation. Journal of Hazardous Materials, 2012, 209-210, 408-413.	12.4	229
10	Freestanding three-dimensional core–shell nanoarrays for lithium-ion battery anodes. Nature Communications, 2016, 7, 11774.	12.8	143
11	Double Soft-Template Synthesis of Nitrogen/Sulfur-Codoped Hierarchically Porous Carbon Materials Derived from Protic Ionic Liquid for Supercapacitor. ACS Applied Materials & Interfaces, 2017, 9, 26088-26095.	8.0	142
12	Naturally derived nanostructured materials from biomass for rechargeable lithium/sodium batteries. Nano Energy, 2015, 17, 91-103.	16.0	135
13	A green and effective room-temperature recycling process of LiFePO4 cathode materials for lithium-ion batteries. Waste Management, 2019, 85, 437-444.	7.4	110
14	A Chemical Precipitation Method Preparing Hollow–Core–Shell Heterostructures Based on the Prussian Blue Analogs as Cathode for Sodiumâ€ion Batteries. Small, 2018, 14, e1801246.	10.0	104
15	Preliminary investigation of phosphorus adsorption onto two types of iron oxide-organic matter complexes. Journal of Environmental Sciences, 2016, 42, 152-162.	6.1	102
16	Engineered Biochar from Biofuel Residue: Characterization and Its Silver Removal Potential. ACS Applied Materials & Interfaces, 2015, 7, 10634-10640.	8.0	98
17	Preparation of MnO ₂ -Modified Graphite Sorbents from Spent Li-Ion Batteries for the Treatment of Water Contaminated by Lead, Cadmium, and Silver. ACS Applied Materials & Interfaces, 2017, 9, 25369-25376.	8.0	94
18	Mesocarbon Microbead Carbon-Supported Magnesium Hydroxide Nanoparticles: Turning Spent Li-ion Battery Anode into a Highly Efficient Phosphate Adsorbent for Wastewater Treatment. ACS Applied Materials & Interfaces, 2016, 8, 21315-21325.	8.0	88

Ying Yao

#	Article	IF	CITATIONS
19	Facile low-temperature one-step synthesis of pomelo peel biochar under air atmosphere and its adsorption behaviors for Ag(I) and Pb(II). Science of the Total Environment, 2018, 640-641, 73-79.	8.0	86
20	Removal of sulfamethoxazole (SMX) and sulfapyridine (SPY) from aqueous solutions by biochars derived from anaerobically digested bagasse. Environmental Science and Pollution Research, 2018, 25, 25659-25667.	5.3	84
21	Kinetics Tuning the Electrochemistry of Lithium Dendrites Formation in Lithium Batteries through Electrolytes. ACS Applied Materials & Interfaces, 2017, 9, 7003-7008.	8.0	76
22	Solvent-Free Synthesis of N/S-Codoped Hierarchically Porous Carbon Materials from Protic Ionic Liquids for Temperature-Resistant, Flexible Supercapacitors. ACS Sustainable Chemistry and Engineering, 2018, 6, 13494-13503.	6.7	48
23	Recycling supercapacitor activated carbons for adsorption of silver (I) and chromium (VI) ions from aqueous solutions. Chemosphere, 2020, 238, 124638.	8.2	47
24	A universal method to fabricating porous carbon for Li-O2 battery. Nano Energy, 2021, 82, 105782.	16.0	42
25	Mg-Enriched Engineered Carbon from Lithium-Ion Battery Anode for Phosphate Removal. ACS Applied Materials & Interfaces, 2016, 8, 2905-2909.	8.0	40
26	Self-Nitrogen-Doped Carbon from Plant Waste as an Oxygen Electrode Material with Exceptional Capacity and Cycling Stability for Lithium–Oxygen Batteries. ACS Applied Materials & Interfaces, 2018, 10, 32212-32219.	8.0	38
27	Quantifying the environmental impact of a Li-rich high-capacity cathode material in electric vehicles via life cycle assessment. Environmental Science and Pollution Research, 2017, 24, 1251-1260.	5.3	26
28	New Application of Waste Citrus Maxima Peel-Derived Carbon as an Oxygen Electrode Material for Lithium Oxygen Batteries. ACS Applied Materials & Interfaces, 2018, 10, 32058-32066.	8.0	25
29	Ultralong Cycle Life Achieved by a Natural Plant: <i>Miscanthus × giganteus</i> for Lithium Oxygen Batteries. ACS Applied Materials & Interfaces, 2017, 9, 4382-4390.	8.0	24
30	Underestimation of phosphorus fraction change in the supernatant after phosphorus adsorption onto iron oxides and iron oxide–natural organic matter complexes. Journal of Environmental Sciences, 2017, 55, 197-205.	6.1	23
31	Turning Waste Chemicals into Wealth—A New Approach To Synthesize Efficient Cathode Material for an Li–O ₂ Battery. ACS Applied Materials & Interfaces, 2017, 9, 31907-31912.	8.0	21
32	Synthesis of Mg-Decorated Carbon Nanocomposites from MesoCarbon MicroBeads (MCMB) Graphite: Application for Wastewater Treatment. ACS Omega, 2016, 1, 417-423.	3.5	20
33	Effect of the Activation Process on the Microstructure and Electrochemical Properties of N-Doped Carbon Cathodes in Li–O ₂ Batteries. ACS Applied Materials & Interfaces, 2019, 11, 34997-35004.	8.0	19
34	From Black Liquor to Green Energy Resource: Positive Electrode Materials for Li–O ₂ Battery with High Capacity and Long Cycle Life. ACS Applied Materials & Interfaces, 2020, 12, 16521-16530.	8.0	14
35	Optimization of oxygen electrode combined with soluble catalyst to enhance the performance of lithium–oxygen battery. Energy Storage Materials, 2020, 28, 73-81.	18.0	12
36	Biochars preparation from waste sludge and composts under different carbonization conditions and their Pb(II) adsorption behaviors. Water Science and Technology, 2019, 80, 1063-1075.	2.5	9

Ying Yao

#	Article	IF	CITATIONS
37	Optimization for electrochemical redox performance of Li+/Li couple based on steady-state polarization curve. Electrochimica Acta, 2015, 176, 836-844.	5.2	6
38	Burning magnesium in carbon dioxide for highly effective phosphate removal. , 2021, 3, 330-337.		4
39	Effect of Nitrogen Dopant Forms of Biochar Cathode on the Discharge Mechanism of Li-O ₂ Battery. Journal of the Electrochemical Society, 2021, 168, 090517.	2.9	2
40	Does heavy metal hurt in the secondary battery production sites? The case study of occupational risk from Yangtze River Delta, China. Human and Ecological Risk Assessment (HERA), 2017, 23, 1285-1299.	3.4	1