
Pavel E Volynsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2620122/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spatial Structure of the Dimeric Transmembrane Domain of the Growth Factor Receptor ErbB2 Presumably Corresponding to the Receptor Active State. Journal of Biological Chemistry, 2008, 283, 6950-6956.	1.6	189
2	Unique Dimeric Structure of BNip3 Transmembrane Domain Suggests Membrane Permeabilization as a Cell Death Trigger. Journal of Biological Chemistry, 2007, 282, 16256-16266.	1.6	121
3	Pore formation in lipid membrane I: Continuous reversible trajectory from intact bilayer through hydrophobic defect to transversal pore. Scientific Reports, 2017, 7, 12152.	1.6	102
4	Spatial Structure and pH-dependent Conformational Diversity of Dimeric Transmembrane Domain of the Receptor Tyrosine Kinase EphA1. Journal of Biological Chemistry, 2008, 283, 29385-29395.	1.6	100
5	Left-Handed Dimer of EphA2 Transmembrane Domain: Helix Packing Diversity among Receptor Tyrosine Kinases. Biophysical Journal, 2010, 98, 881-889.	0.2	100
6	PREDDIMER: a web server for prediction of transmembrane helical dimers. Bioinformatics, 2014, 30, 889-890.	1.8	77
7	Pore formation in lipid membrane II: Energy landscape under external stress. Scientific Reports, 2017, 7, 12509.	1.6	73
8	Antimicrobial Peptides Induce Growth of Phosphatidylglycerol Domains in a Model Bacterial Membrane. Journal of Physical Chemistry Letters, 2010, 1, 3108-3111.	2.1	65
9	Multistate Organization of Transmembrane Helical Protein Dimers Governed by the Host Membrane. Journal of the American Chemical Society, 2012, 134, 14390-14400.	6.6	63
10	Pyrenemethyl ara-Uridine-2′-carbamate: A Strong Interstrand Excimer in the Major Groove of a DNA Duplex. ChemBioChem, 2003, 4, 841-847.	1.3	61
11	HER2 Transmembrane Domain Dimerization Coupled with Self-Association of Membrane-Embedded Cytoplasmic Juxtamembrane Regions. Journal of Molecular Biology, 2016, 428, 52-61.	2.0	55
12	Temperature-sensitive gating of TRPV1 channel as probed by atomistic simulations of its trans- and juxtamembrane domains. Scientific Reports, 2016, 6, 33112.	1.6	49
13	Interaction of Cardiotoxins with Membranes: A Molecular Modeling Study. Biophysical Journal, 2002, 83, 144-153.	0.2	46
14	Liquid but Durable: Molecular Dynamics Simulations Explain the Unique Properties of Archaeal-Like Membranes. Scientific Reports, 2014, 4, 7462.	1.6	42
15	Factors important for fusogenic activity of peptides: molecular modeling study of analogs of fusion peptide of influenza virus hemagglutinin. FEBS Letters, 1999, 462, 205-210.	1.3	40
16	Role of Lipid Charge in Organization of Water/Lipid Bilayer Interface:Â Insights via Computer Simulations. Journal of Physical Chemistry B, 2005, 109, 15052-15059.	1.2	40
17	The Conformation of the Epidermal Growth Factor Receptor Transmembrane Domain Dimer Dynamically Adapts to the Local Membrane Environment. Biochemistry, 2017, 56, 1697-1705.	1.2	39
18	Three-Dimensional Structure/Hydrophobicity of Latarcins Specifies Their Mode of Membrane Activity [,] . Biochemistry, 2008, 47, 3525-3533.	1.2	38

PAVEL E VOLYNSKY

#	Article	IF	CITATIONS
19	Spatial Structure and Activity Mechanism of a Novel Spider Antimicrobial Peptide,. Biochemistry, 2006, 45, 10759-10767.	1.2	37
20	Adaptation of a Membrane-active Peptide to Heterogeneous Environment. I. Structural Plasticity of the Peptide. Journal of Physical Chemistry B, 2009, 113, 1107-1119.	1.2	36
21	Nâ€ŧerminal amphipathic helix as a trigger of hemolytic activity in antimicrobial peptides: A case study in latarcins. FEBS Letters, 2009, 583, 2425-2428.	1.3	34
22	Structure elucidation of dimeric transmembrane domains of bitopic proteins. Cell Adhesion and Migration, 2010, 4, 284-298.	1.1	34
23	Effect of Lipid Composition on the "Membrane Response―Induced by a Fusion Peptideâ€. Biochemistry, 2005, 44, 14626-14637.	1.2	31
24	Structural basis of the signal transduction via transmembrane domain of the human growth hormone receptor. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 1410-1420.	1.1	28
25	Association of transmembrane helices: what determines assembling of a dimer?. Journal of Computer-Aided Molecular Design, 2006, 20, 27-45.	1.3	23
26	Adaptation of a Membrane-active Peptide to Heterogeneous Environment. II. The Role of Mosaic Nature of the Membrane Surface. Journal of Physical Chemistry B, 2009, 113, 1120-1126.	1.2	23
27	Spatial structure of TLR4 transmembrane domain in bicelles provides the insight into the receptor activation mechanism. Scientific Reports, 2017, 7, 6864.	1.6	23
28	Adaptable Lipid Matrix Promotes Protein–Protein Association in Membranes. Journal of Chemical Theory and Computation, 2015, 11, 4415-4426.	2.3	21
29	Role of Dimerization Efficiency of Transmembrane Domains in Activation of Fibroblast Growth Factor Receptor 3. Journal of the American Chemical Society, 2013, 135, 8105-8108.	6.6	20
30	Implicit two-phase solvation model as a tool to assess conformation and energetics of proteins in membrane-mimetic media. Theoretical Chemistry Accounts, 2001, 106, 48-54.	0.5	18
31	Specificity of helix packing in transmembrane dimer of the cell death factor BNIP3: A molecular modeling study. Proteins: Structure, Function and Bioinformatics, 2007, 69, 309-325.	1.5	15
32	Helix Interactions in Membranes:Â Lessons from Unrestrained Monte Carlo Simulations. Journal of Chemical Theory and Computation, 2005, 1, 1252-1264.	2.3	13
33	Impact of membrane partitioning on the spatial structure of an S-type cobra cytotoxin. Journal of Biomolecular Structure and Dynamics, 2018, 36, 3463-3478.	2.0	13
34	Familial L723P Mutation Can Shift the Distribution between the Alternative APP Transmembrane Domain Cleavage Cascades by Local Unfolding of the Ε-Cleavage Site Suggesting a Straightforward Mechanism of Alzheimer's Disease Pathogenesis. ACS Chemical Biology, 2019, 14, 1573-1582.	1.6	13
35	Structural, dynamic, and functional aspects of helix association in membranes. Advances in Protein Chemistry and Structural Biology, 2011, 83, 129-161.	1.0	12
36	Computer simulations and modeling-assisted ToxR screening in deciphering 3D structures of transmembrane α-helical dimers: ephrin receptor A1. Physical Biology, 2010, 7, 016014.	0.8	11

PAVEL E VOLYNSKY

#	Article	IF	CITATIONS
37	Development of the force field parameters for phosphoimidazole and phosphohistidine. Journal of Computational Chemistry, 2004, 25, 1313-1321.	1.5	10
38	Effects of Sterols on the Interaction of SDS, Benzalkonium Chloride, and A Novel Compound, Kor105, with Membranes. Biomolecules, 2019, 9, 627.	1.8	10
39	Phospholipase A2 way to hydrolysis: Dint formation, hydrophobic mismatch, and lipid exclusion. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183481.	1.4	10
40	COMPUTER SIMULATIONS OF MEMBRANE-LYTIC PEPTIDES: PERSPECTIVES IN DRUG DESIGN. Journal of Bioinformatics and Computational Biology, 2007, 05, 611-626.	0.3	9
41	Secretory phospholipase A2 activity in blood serum: The challenge to sense. Biochemical and Biophysical Research Communications, 2014, 454, 178-182.	1.0	9
42	Why human anti-Galα1–4Galβ1–4Glc natural antibodies do not recognize the trisaccharide on erythrocyte membrane? Molecular dynamics and immunochemical investigation. Molecular Immunology, 2017, 90, 87-97.	1.0	8
43	Monte Carlo simulations of voltage-driven translocation of a signal sequence. FEBS Letters, 2002, 526, 97-100.	1.3	7
44	Improving therapeutic potential of antibacterial spider venom peptides: coarse-grain molecular dynamics guided approach. Future Medicinal Chemistry, 2018, 10, 2309-2322.	1.1	7
45	BILMIX: a new approach to restore the size polydispersity and electron density profiles of lipid bilayers from liposomes using small-angle X-ray scattering data. Journal of Applied Crystallography, 2020, 53, 236-243.	1.9	7
46	All-d-Enantiomeric Peptide D3 Designed for Alzheimer's Disease Treatment Dynamically Interacts with Membrane-Bound Amyloid-β Precursors. Journal of Medicinal Chemistry, 2021, 64, 16464-16479.	2.9	7
47	Structure of Supramers Formed by the Amphiphile Biotin MGâ€ÐOPE. ChemistryOpen, 2020, 9, 641-648.	0.9	5
48	Recognizing misfolded and distorted protein structures by the assumption-based similarity score. Protein Engineering, Design and Selection, 1999, 12, 31-40.	1.0	4
49	Assessment of conformation and energetics of the N-terminal part of elafin via computer simulations. Theoretical Chemistry Accounts, 2001, 106, 55-61.	0.5	4
50	Specific refolding pathway of viscumin A chain in membrane-like medium reveals a possible mechanism of toxin entry into cell. Scientific Reports, 2019, 9, 413.	1.6	3
51	Cyclopentane rings in hydrophobic chains of a phospholipid enhance the bilayer stability to electric breakdown. Soft Matter, 2020, 16, 3216-3223.	1.2	3
52	Probing temperature and capsaicin-induced activation of TRPV1 channel via computationally guided point mutations in its pore and TRP domains. International Journal of Biological Macromolecules, 2020, 158, 1175-1183.	3.6	3
53	Modeling of Peptides in Implicit Membrane-Mimetic Media. Molecular Simulation, 2000, 24, 275-291.	0.9	2
54	The Membrane-proximal Fusion Domain of HIV-1 GP41 Reveals Sequence-specific and Fine-tuning Mechanism of Membrane Binding. Journal of Biomolecular Structure and Dynamics, 2007, 25, 195-205.	2.0	2

PAVEL E VOLYNSKY

#	Article	IF	CITATIONS
55	Structural Aspects of Transmembrane Domain Interactions of Receptor Tyrosine Kinases. Biophysical Journal, 2011, 100, 207a.	0.2	1
56	Structure-Functional Insight into Transmembrane Helix Dimerization byÂProtein Engineering, Molecular Modeling and Heteronuclear NMR Spectroscopy. Biophysical Journal, 2012, 102, 470a.	0.2	1
57	The role of chain rigidity in lipid self-association: Comparative study of dihexanoyl- and disorbyl-phosphatidylcholines. Chemistry and Physics of Lipids, 2012, 165, 382-386.	1.5	1
58	Dynamic Structural/Amphiphilic "Portrait―of Biomembranes as their Fundamental Property Relevant to Function: Results of Atomistic Simulations. Biophysical Journal, 2015, 108, 78a.	0.2	1
59	Protein-Membrane Interactions: Lessons from In Silico Studies. , 2007, , 19-39.		1
60	The Membrane-Water Partition Coefficients of Antifungal, but Not Antibacterial, Membrane-Active Compounds Are Similar. Frontiers in Microbiology, 2021, 12, 756408.	1.5	1
61	Differences in Medium-Induced Conformational Plasticity Presumably Underlie Different Cytotoxic Activity of Ricin and Viscumin. Biomolecules, 2022, 12, 295.	1.8	1
62	Recognition Specificity of Proteins and Biomembranes: A Computational View. Biophysical Journal, 2012, 102, 434a.	0.2	0
63	Influence of Ether Bonds and Branched Lipid Tails on Stability of Membranes to Pore Formation. Biophysical Journal, 2015, 108, 238a-239a.	0.2	Ο
64	Temperature-Sensitive Gating of TRPV1 Channel as Probed by Atomistic Simulations. Biophysical Journal, 2017, 112, 506a.	0.2	0
65	Energy Landscape of Pore Formation in Bilayer Lipid Membrane. Biophysical Journal, 2017, 112, 468a.	0.2	0
66	Behavior of Doxorubicin Lipophilic Conjugates in Liposomal Lipid Bilayers. Russian Journal of Bioorganic Chemistry, 2018, 44, 732-739.	0.3	0
67	Dynamic "Molecular Portraits―of Proteins and Cell Membranes: A Computational View. Biophysical Journal, 2019, 116, 205a.	0.2	0
68	Computer Simulations of Anionic Unsaturated Lipid Bilayer—A Suitable Model to Study Membrane Interactions with A Cell-Penetrating Peptide. , 2006, , 235-246.		0