Vera Marisa Costa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2620059/publications.pdf

Version: 2024-02-01

76294 29127 32,090 114 40 104 citations h-index g-index papers 138 138 138 29063 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet, The, 2020, 396, 1204-1222.	6.3	7,664
2	Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019. Journal of the American College of Cardiology, 2020, 76, 2982-3021.	1.2	4,468
3	Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet, The, 2020, 396, 1223-1249.	6.3	3,928
4	Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurology, The, 2019, 18, 459-480.	4.9	2,625
5	Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurology, The, 2021, 20, 795-820.	4.9	2,308
6	Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017. JAMA Oncology, 2019, 5, 1749.	3.4	1,691
7	Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health, The, 2022, 7, e105-e125.	4.7	1,199
8	Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950–2019: a comprehensive demographic analysis for the Global Burden of Disease Study 2019. Lancet, The, 2020, 396, 1160-1203.	6.3	890
9	The global, regional, and national burden of cirrhosis by cause in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet Gastroenterology and Hepatology, 2020, 5, 245-266.	3.7	823
10	Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life Years for 29 Cancer Groups From 2010 to 2019. JAMA Oncology, 2022, 8, 420.	3.4	719
11	Spatial, temporal, and demographic patterns in prevalence of smoking tobacco use and attributable disease burden in 204 countries and territories, 1990–2019: a systematic analysis from the Global Burden of Disease Study 2019. Lancet, The, 2021, 397, 2337-2360.	6.3	609
12	The global, regional, and national burden of stomach cancer in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease study 2017. The Lancet Gastroenterology and Hepatology, 2020, 5, 42-54.	3.7	390
13	Toxicity of amphetamines: an update. Archives of Toxicology, 2012, 86, 1167-1231.	1.9	364
14	Five insights from the Global Burden of Disease Study 2019. Lancet, The, 2020, 396, 1135-1159.	6.3	335
15	Measuring universal health coverage based on an index of effective coverage of health services in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet, The, 2020, 396, 1250-1284.	6.3	330
16	The global, regional, and national burden of oesophageal cancer and its attributable risk factors in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet Gastroenterology and Hepatology, 2020, 5, 582-597.	3.7	241
17	Global, regional, and national progress towards Sustainable Development Goal 3.2 for neonatal and child health: all-cause and cause-specific mortality findings from the Global Burden of Disease Study 2019. Lancet, The, 2021, 398, 870-905.	6.3	229
18	The global burden of childhood and adolescent cancer in 2017: an analysis of the Global Burden of Disease Study 2017. Lancet Oncology, The, 2019, 20, 1211-1225.	5.1	199

#	Article	IF	CITATIONS
19	Global, regional, and national burden of colorectal cancer and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet Gastroenterology and Hepatology, 2022, 7, 627-647.	3.7	177
20	Comprehensive review of cardiovascular toxicity of drugs and related agents. Medicinal Research Reviews, 2018, 38, 1332-1403.	5.0	176
21	Mapping 123 million neonatal, infant and child deaths between 2000 and 2017. Nature, 2019, 574, 353-358.	13.7	161
22	Amanita phalloides poisoning: Mechanisms of toxicity and treatment. Food and Chemical Toxicology, 2015, 86, 41-55.	1.8	145
23	Global injury morbidity and mortality from 1990 to 2017: results from the Global Burden of Disease Study 2017. Injury Prevention, 2020, 26, i96-i114.	1.2	103
24	Synephrine: From trace concentrations to massive consumption in weight-loss. Food and Chemical Toxicology, 2011, 49, 8-16.	1.8	95
25	Contribution of Catecholamine Reactive Intermediates and Oxidative Stress to the Pathologic Features of Heart Diseases. Current Medicinal Chemistry, 2011, 18, 2272-2314.	1.2	93
26	Measuring routine childhood vaccination coverage in 204 countries and territories, 1980–2019: a systematic analysis for the Global Burden of Disease Study 2020, Release 1. Lancet, The, 2021, 398, 503-521.	6.3	93
27	Global, regional, and national mortality among young people aged 10–24 years, 1950–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet, The, 2021, 398, 1593-1618.	6.3	92
28	Mapping geographical inequalities in access to drinking water and sanitation facilities in low-income and middle-income countries, 2000–17. The Lancet Global Health, 2020, 8, e1162-e1185.	2.9	91
29	The global burden of adolescent and young adult cancer in 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Oncology, The, 2022, 23, 27-52.	5.1	90
30	ER Stress-Inducible Factor CHOP Affects the Expression of Hepcidin by Modulating C/EBPalpha Activity. PLoS ONE, 2009, 4, e6618.	1.1	88
31	Flavonoids as antiobesity agents: A review. Medicinal Research Reviews, 2021, 41, 556-585.	5.0	81
32	Mapping geographical inequalities in childhood diarrhoeal morbidity and mortality in low-income and middle-income countries, 2000–17: analysis for the Global Burden of Disease Study 2017. Lancet, The, 2020, 395, 1779-1801.	6.3	72
33	The Heart As a Target for Xenobiotic Toxicity: The Cardiac Susceptibility to Oxidative Stress. Chemical Research in Toxicology, 2013, 26, 1285-1311.	1.7	70
34	Oxidation Process of Adrenaline in Freshly Isolated Rat Cardiomyocytes: Formation of Adrenochrome, Quinoproteins, and GSH Adduct. Chemical Research in Toxicology, 2007, 20, 1183-1191.	1.7	68
35	The neurotoxicity of amphetamines during the adolescent period. International Journal of Developmental Neuroscience, 2015, 41, 44-62.	0.7	66
36	Anemia prevalence in women of reproductive age in low- and middle-income countries between 2000 and 2018. Nature Medicine, 2021, 27, 1761-1782.	15.2	60

#	Article	IF	CITATIONS
37	An updated review on synthetic cathinones. Archives of Toxicology, 2021, 95, 2895-2940.	1.9	59
38	The metabolic profile of mitoxantrone and its relation with mitoxantrone-induced cardiotoxicity. Archives of Toxicology, 2013, 87, 1809-1820.	1.9	49
39	A breakthrough on Amanita phalloides poisoning: an effective antidotal effect by polymyxin B. Archives of Toxicology, 2015, 89, 2305-2323.	1.9	48
40	Estimating global injuries morbidity and mortality: methods and data used in the Global Burden of Disease 2017 study. Injury Prevention, 2020, 26, i125-i153.	1.2	44
41	The Role of the Metabolism of Anticancer Drugs in Their Induced-Cardiotoxicity. Current Drug Metabolism, 2015, 17, 75-90.	0.7	41
42	Global, regional and national burden of bladder cancer and its attributable risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease study 2019. BMJ Global Health, 2021, 6, e004128.	2.0	41
43	Neurotoxicity of "ecstasy―and its metabolites in human dopaminergic differentiated SH-SY5Y cells. Toxicology Letters, 2013, 216, 159-170.	0.4	39
44	Spatial, temporal, and demographic patterns in prevalence of chewing tobacco use in 204 countries and territories, 1990–2019: a systematic analysis from the Global Burden of Disease Study 2019. Lancet Public Health, The, 2021, 6, e482-e499.	4.7	38
45	The neurotoxicity of hallucinogenic amphetamines in primary cultures of hippocampal neurons. NeuroToxicology, 2013, 34, 254-263.	1.4	37
46	Mitochondrial Cumulative Damage Induced by Mitoxantrone: Late Onset Cardiac Energetic Impairment. Cardiovascular Toxicology, 2014, 14, 30-40.	1.1	37
47	Quantification of alpha-amanitin in biological samples by HPLC using simultaneous UV- diode array and electrochemical detection. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2015, 997, 85-95.	1.2	36
48	Adrenaline in pro-oxidant conditions elicits intracellular survival pathways in isolated rat cardiomyocytes. Toxicology, 2009, 257, 70-79.	2.0	35
49	Therapeutic Concentrations of Mitoxantrone Elicit Energetic Imbalance in H9c2 Cells as an Earlier Event. Cardiovascular Toxicology, 2013, 13, 413-425.	1.1	31
50	Adrenaline and reactive oxygen species elicit proteome and energetic metabolism modifications in freshly isolated rat cardiomyocytes. Toxicology, 2009, 260, 84-96.	2.0	30
51	The age factor for mitoxantrone's cardiotoxicity: Multiple doses render the adult mouse heart more susceptible to injury. Toxicology, 2015, 329, 106-119.	2.0	30
52	Biodistribution of polyacrylic acidâ€coated iron oxide nanoparticles is associated with proinflammatory activation and liver toxicity. Journal of Applied Toxicology, 2016, 36, 1321-1331.	1.4	29
53	Structural isomerization of synephrine influences its uptake and ensuing glutathione depletion in rat-isolated cardiomyocytes. Archives of Toxicology, 2011, 85, 929-939.	1.9	27
54	Development and validation of a GC/IT-MS method for simultaneous quantitation of para and meta-synephrine in biological samples. Journal of Pharmaceutical and Biomedical Analysis, 2010, 52, 721-726.	1.4	26

#	Article	IF	Citations
55	Chemical characterization and protective effect of the Bactris setosa Mart. fruit against oxidative/nitrosative stress. Food Chemistry, 2017, 220, 427-437.	4.2	26
56	The importance of drug metabolites synthesis: the case-study of cardiotoxic anticancer drugs. Drug Metabolism Reviews, 2017, 49, 158-196.	1.5	25
57	Structure-cytotoxicity relationship profile of 13 synthetic cathinones in differentiated human SH-SY5Y neuronal cells. NeuroToxicology, 2019, 75, 158-173.	1.4	25
58	Mapping geographical inequalities in oral rehydration therapy coverage in low-income and middle-income countries, 2000–17. The Lancet Global Health, 2020, 8, e1038-e1060.	2.9	23
59	An update of the molecular mechanisms underlying doxorubicin plus trastuzumab induced cardiotoxicity. Life Sciences, 2021, 280, 119760.	2.0	23
60	Methylphenidate effects in the young brain: friend or foe?. International Journal of Developmental Neuroscience, 2017, 60, 34-47.	0.7	22
61	An effective antidotal combination of polymyxin B and methylprednisolone for \hat{l}_{\pm} -amanitin intoxication. Archives of Toxicology, 2019, 93, 1449-1463.	1.9	22
62	Inosine Strongly Enhances Proliferation of Human C32 Melanoma Cells through <scp>PLC</scp> â€ <scp>PKC</scp> â€ <scp>MEK</scp> 1/2â€ <scp>ERK</scp> 1/2 and PI3K Pathways. Basic and Clinical Pharmacology and Toxicology, 2015, 116, 25-36.	1.2	21
63	In vitro mechanistic studies on \hat{l}_{\pm} -amanitin and its putative antidotes. Archives of Toxicology, 2020, 94, 2061-2078.	1.9	20
64	Naphthoquinoxaline metabolite of mitoxantrone is less cardiotoxic than the parent compound and it can be a more cardiosafe drug in anticancer therapy. Archives of Toxicology, 2017, 91, 1871-1890.	1.9	18
65	Acetaminophen prevents oxidative burst and delays apoptosis in human neutrophils. Toxicology Letters, 2013, 219, 170-177.	0.4	17
66	Cross-Functioning between the Extraneuronal Monoamine Transporter and Multidrug Resistance Protein 1 in the Uptake of Adrenaline and Export of 5-(Glutathion <i>-S-</i>)drenaline in Rat Cardiomyocytes. Chemical Research in Toxicology, 2009, 22, 129-135.	1.7	16
67	Combination of Cl-IB-MECA with paclitaxel is a highly effective cytotoxic therapy causing mTOR-dependent autophagy and mitotic catastrophe on human melanoma cells. Journal of Cancer Research and Clinical Oncology, 2014, 140, 921-935.	1.2	16
68	Role of Inflammation and Redox Status on Doxorubicin-Induced Cardiotoxicity in Infant and Adult CD-1 Male Mice. Biomolecules, 2021, 11, 1725.	1.8	16
69	Quantitative histochemistry for macrophage biodistribution on mice liver and spleen after the administration of a pharmacological-relevant dose of polyacrylic acid-coated iron oxide nanoparticles. Nanotoxicology, 2017, 11, 256-266.	1.6	15
70	Exploring the aging effect of the anticancer drugs doxorubicin and mitoxantrone on cardiac mitochondrial proteome using a murine model. Toxicology, 2021, 459, 152852.	2.0	15
71	Potentiation of cytotoxicity of paclitaxel in combination with Cl-IB-MECA in human C32 metastatic melanoma cells: A new possible therapeutic strategy for melanoma. Biomedicine and Pharmacotherapy, 2013, 67, 777-789.	2.5	14
72	Co-ingestion of amatoxins and isoxazoles-containing mushrooms and successful treatment: A case report. Toxicon, 2015, 103, 55-59.	0.8	14

#	Article	IF	CITATIONS
73	Cardiotoxicity of cyclophosphamide's metabolites: an in vitro metabolomics approach in AC16 human cardiomyocytes. Archives of Toxicology, 2022, 96, 653-671.	1.9	14
74	Cumulative Mitoxantroneâ€Induced Haematological and Hepatic Adverse Effects in a Subchronic <i>In vivo</i> Study. Basic and Clinical Pharmacology and Toxicology, 2014, 114, 254-262.	1.2	13
75	Toxicity of the amphetamine metabolites 4-hydroxyamphetamine and 4-hydroxynorephedrine in human dopaminergic differentiated SH-SY5Y cells. Toxicology Letters, 2017, 269, 65-76.	0.4	13
76	Mitoxantrone is More Toxic than Doxorubicin in SH-SY5Y Human Cells: A â€~Chemobrain' In Vitro Study. Pharmaceuticals, 2018, 11, 41.	1.7	13
77	Doxorubicin Is Key for the Cardiotoxicity of FAC (5-Fluorouracil + Adriamycin + Cyclophosphamide) Combination in Differentiated H9c2 Cells. Biomolecules, 2019, 9, 21.	1.8	13
78	Inflammation as a Possible Trigger for Mitoxantrone-Induced Cardiotoxicity: An In Vivo Study in Adult and Infant Mice. Pharmaceuticals, 2021, 14, 510.	1.7	13
79	Evaluation of GSH adducts of adrenaline in biological samples. Biomedical Chromatography, 2007, 21, 670-679.	0.8	12
80	The Main Metabolites of Fluorouracil + Adriamycin + Cyclophosphamide (FAC) Are Not Major Contributors to FAC Toxicity in H9c2 Cardiac Differentiated Cells. Biomolecules, 2019, 9, 98.	1.8	11
81	In vivo toxicometabolomics reveals multi-organ and urine metabolic changes in mice upon acuteÂexposure to human-relevant doses of 3,4-methylenedioxypyrovalerone (MDPV). Archives of Toxicology, 2021, 95, 509-527.	1.9	11
82	The combination of Cl-IB-MECA with paclitaxel: a new anti-metastatic therapeutic strategy for melanoma. Cancer Chemotherapy and Pharmacology, 2014, 74, 847-860.	1.1	10
83	"Ecstasy―toxicity to adolescent rats following an acute low binge dose. BMC Pharmacology & Toxicology, 2016, 17, 28.	1.0	10
84	Methylphenidate clinically oral doses improved brain and heart glutathione redox status and evoked renal and cardiac tissue injury in rats. Biomedicine and Pharmacotherapy, 2018, 100, 551-563.	2.5	9
85	Aged rats are more vulnerable than adolescents to "ecstasy―induced toxicity. Archives of Toxicology, 2018, 92, 2275-2295.	1.9	9
86	Mitoxantrone impairs proteasome activity and prompts early energetic and proteomic changes in HL-1 cardiomyocytes at clinically relevant concentrations. Archives of Toxicology, 2020, 94, 4067-4084.	1.9	9
87	Four decades of chemotherapy-induced cognitive dysfunction: comprehensive review of clinical, animal and in vitro studies, and insights of key initiating events. Archives of Toxicology, 2022, 96, 11-78.	1.9	9
88	Adverse outcome pathways induced by 3,4-dimethylmethcathinone and 4-methylmethcathinone in differentiated human SH-SY5Y neuronal cells. Archives of Toxicology, 2020, 94, 2481-2503.	1.9	8
89	Modeling chronic brain exposure to amphetamines using primary rat neuronal cortical cultures. Neuroscience, 2014, 277, 417-434.	1.1	7
90	The Secretome of Human Neonatal Mesenchymal Stem Cells Modulates Doxorubicin-Induced Cytotoxicity: Impact in Non-Tumor Cells. International Journal of Molecular Sciences, 2021, 22, 13072.	1.8	7

#	Article	IF	CITATIONS
91	Methods for the analysis of transcriptome dynamics. Toxicology Research, 2019, 8, 597-612.	0.9	6
92	Discovery of New Potent Positive Allosteric Modulators of Dopamine D ₂ Receptors: Insights into the Bioisosteric Replacement of Proline to 3-Furoic Acid in the Melanostatin Neuropeptide. Journal of Medicinal Chemistry, 2021, 64, 6209-6220.	2.9	6
93	Pixantrone, a new anticancer drug with the same old cardiac problems? An in vitro study with differentiated and non-differentiated H9c2 cells. Interdisciplinary Toxicology, 2018, 11, 13-21.	1.0	6
94	Chemobrain: mitoxantrone-induced oxidative stress, apoptotic and autophagic neuronal death in adult CD-1 mice. Archives of Toxicology, 2022, 96, 1767-1782.	1.9	6
95	Antidotal effect of cyclosporine A against \hat{l} ±-amanitin toxicity in CD-1 mice, at clinical relevant doses. Food and Chemical Toxicology, 2022, 166, 113198.	1.8	5
96	Histological and toxicological evaluation, in rat, of a P-glycoprotein inducer and activator: 1-(propan-2-ylamino)-4-propoxy-9-thioxanthen-9-one (TX5). EXCLI Journal, 2019, 18, 697-722.	0.5	2
97	Neurotoxicity of amphetamine and its metabolite 4-hydroxynorephedrine on differentiated SH-SY5Y dopaminergic cells. Toxicology Letters, 2015, 238, S358.	0.4	1
98	Clorgyline and N-acetyl-L-cysteine provide partial protection against the toxicity of synthetic cathinones and methamphetamine on SH-SY5Y humans cells. Toxicology Letters, 2018, 295, S274.	0.4	1
99	Effect of adrenaline and oxygen free radicals on calcium tolerant cardiomyocytes: Formation of glutathione adducts. Toxicology Letters, 2006, 164, S130-S131.	0.4	0
100	Validation of a HPLC-ECD method for the detection of adrenaline-GSH adducts in biological samples. Toxicology Letters, 2006, 164, S132.	0.4	0
101	Time dependent activation of transcription factors in freshly isolated cardiomyocytes: Adrenaline and reactive oxygen species incubation. Toxicology Letters, 2007, 172, S5-S6.	0.4	0
102	Therapeutic concentrations of mitoxantrone elicit cytotoxic effects on H9c2 cells. Toxicology Letters, 2011, 205, S56.	0.4	0
103	â€~Ecstasy' and amphetamine induce developmental neurotoxicity to immature cultured rat cortical neurons. Toxicology Letters, 2011, 205, S113.	0.4	0
104	N-acetyl-cysteine prevents the cytotoxicity of adrenaline oxidation in SH-SY5Y cells. Toxicology Letters, 2011, 205, S220.	0.4	0
105	â€~Ecstasy' and amphetamine neurotoxicity to cultured rat cortical neurons in a continuous exposure model. Toxicology Letters, 2013, 221, S233.	0.4	0
106	The putative pro-inflammatory effect and oxidative stress induced by polyacrylic acid-coated iron oxide nanoparticles in mice: An biodistribution and toxicological study. Toxicology Letters, 2015, 238, S273.	0.4	0
107	Studies towards the synthesis of dicarboxylic acid metabolite of mitoxantrone. Porto Biomedical Journal, 2017, 2, 220-221.	0.4	0
108	Chemobrain., 2021,, 61-72.		0

#	Article	lF	CITATIONS
109	Effects of Doxorubicin and Mitoxantrone in the brain of differently aged mice: in vivo chemobrain study. , 0, , .		O
110	The main products of cyclophosphamide bioactivation exert a cardiotoxic effect at clinical important concentrations in AC16 cardiac cells. , 0, , .		0
111	Anticancer drugs-induced toxicity in different age male CD-1 mice. , 0, , .		O
112	In vitro toxicity of \hat{l}_{\pm} -amanitin in human kidney cells and evaluation of protective effect of polymyxin B. , 0, , .		0
113	Mitoxantrone-induced neurotoxicity in CD-1 mice., 2022, 4, .	0.0	O
114	Molecular alterations underlying Doxorubicin's Chronic Cardiotoxicity in a mouse model. , 2022, 4, .	0.0	0