Ulf Matti

List of Publications by Citations

Source: https://exaly.com/author-pdf/262002/ulf-matti-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

14 397 8 19 g-index

23 726 15.9 3.38 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
14	Real-time 3D single-molecule localization using experimental point spread functions. <i>Nature Methods</i> , 2018 , 15, 367-369	21.6	133
13	Nuclear pores as versatile reference standards for quantitative superresolution microscopy. <i>Nature Methods</i> , 2019 , 16, 1045-1053	21.6	105
12	Acetylated tubulin is essential for touch sensation in mice. <i>ELife</i> , 2016 , 5,	8.9	51
11	Optimizing imaging speed and excitation intensity for single-molecule localization microscopy. <i>Nature Methods</i> , 2020 , 17, 909-912	21.6	30
10	Dynamic assembly of ribbon synapses and circuit maintenance in a vertebrate sensory system. <i>Nature Communications</i> , 2019 , 10, 2167	17.4	15
9	Synaptic Convergence Patterns onto Retinal Ganglion Cells Are Preserved despite Topographic Variation in Pre- and Postsynaptic Territories. <i>Cell Reports</i> , 2018 , 25, 2017-2026.e3	10.6	13
8	Deep learning enables fast and dense single-molecule localization with high accuracy. <i>Nature Methods</i> , 2021 , 18, 1082-1090	21.6	13
7	Cost-efficient open source laser engine for microscopy. <i>Biomedical Optics Express</i> , 2020 , 11, 609-623	3.5	10
6	Direct supercritical angle localization microscopy for nanometer 3D superresolution. <i>Nature Communications</i> , 2021 , 12, 1180	17.4	8
5	Site-Specifically-Labeled Antibodies for Super-Resolution Microscopy Reveal Linkage Errors. <i>ACS Nano</i> , 2021 ,	16.7	7
4	Deep learning enables fast and dense single-molecule localization with high accuracy		5
3	Nuclear pores as versatile reference standards for quantitative superresolution microscopy		4
2	Photon-free (s)CMOS camera characterization for artifact reduction in high- and super-resolution micro	oscopy	1
1	Maximum-likelihood model fitting for quantitative analysis of SMLM data		1