Edward W Keefer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2619880/publications.pdf Version: 2024-02-01

FOWARD W KEEER

#	Article	IF	CITATIONS
1	Carbon nanotube coating improves neuronal recordings. Nature Nanotechnology, 2008, 3, 434-439.	15.6	655
2	Detection of physiologically active compounds using cell-based biosensors. Trends in Biotechnology, 2001, 19, 304-309.	4.9	188
3	Robust cell migration and neuronal growth on pristine carbon nanotube sheets and yarns. Journal of Biomaterials Science, Polymer Edition, 2007, 18, 1245-1261.	1.9	154
4	Drug evaluations using neuronal networks cultured on microelectrode arrays. Biosensors and Bioelectronics, 2000, 15, 383-396.	5.3	138
5	Fabrication of Responsive, Softening Neural Interfaces. Advanced Functional Materials, 2012, 22, 3470-3479.	7.8	127
6	Thiolâ€ene/acrylate substrates for softening intracortical electrodes. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 1-11.	1.6	108
7	NMDA Receptor-Dependent Periodic Oscillations in Cultured Spinal Cord Networks. Journal of Neurophysiology, 2001, 86, 3030-3042.	0.9	92
8	Characterization of acute neurotoxic effects of trimethylolpropane phosphate via neuronal network biosensors. Biosensors and Bioelectronics, 2001, 16, 513-525.	5.3	90
9	Autologous transplants of Adipose-Derived Adult Stromal (ADAS) cells afford dopaminergic neuroprotection in a model of Parkinson's disease. Experimental Neurology, 2008, 210, 14-29.	2.0	88
10	A cultural renaissance: in vitro cell biology embraces three-dimensional context. Experimental Neurology, 2005, 192, 1-6.	2.0	75
11	Cultured rat hippocampal neural progenitors generate spontaneously active neural networks. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1621-1626.	3.3	58
12	Early Interfaced Neural Activity from Chronic Amputated Nerves. Frontiers in Neuroengineering, 2009, 2, 5.	4.8	48
13	Acute Toxicity Screening of Novel AChE Inhibitors Using Neuronal Networks on Microelectrode Arrays. NeuroToxicology, 2001, 22, 3-12.	1.4	46
14	Human motor decoding from neural signals: a review. BMC Biomedical Engineering, 2019, 1, 22.	1.7	44
15	Fascicle specific targeting for selective peripheral nerve stimulation. Journal of Neural Engineering, 2019, 16, 066040.	1.8	37
16	A segment of the Mecp2 promoter is sufficient to drive expression in neurons. Human Molecular Genetics, 2005, 14, 3709-3722.	1.4	33
17	A bioelectric neural interface towards intuitive prosthetic control for amputees. Journal of Neural Engineering, 2020, 17, 066001.	1.8	28
18	The Neuro-Glial Properties of Adipose-Derived Adult Stromal (ADAS) Cells Are Not Regulated by Notch 1 and Are Not Derived from Neural Crest Lineage. PLoS ONE, 2008, 3, e1453.	1.1	26

Edward W Keefer

#	Article	IF	CITATIONS
19	Neurophysiologic Effects of Chemical Agent Hydrolysis Products on Cortical Neurons In Vitro. NeuroToxicology, 2001, 22, 393-400.	1.4	25
20	Normal Molecular Repair Mechanisms in Regenerative Peripheral Nerve Interfaces Allow Recording of Early Spike Activity Despite Immature Myelination. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2012, 20, 220-227.	2.7	21
21	Development and demonstration of a disposable low-cost microelectrode array for cultured neuronal network recording. Sensors and Actuators B: Chemical, 2012, 161, 655-660.	4.0	20
22	A Low-Noise, Wireless, Frequency-Shaping Neural Recorder. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2018, 8, 187-200.	2.7	18
23	Botulinum Toxin Suppression of CNS Network Activity <i>In Vitro</i> . Journal of Toxicology, 2014, 2014, 1-10.	1.4	14
24	Asymmetric Sensory-Motor Regeneration of Transected Peripheral Nerves Using Molecular Guidance Cues. Scientific Reports, 2017, 7, 14323.	1.6	14
25	A portable, self-contained neuroprosthetic hand with deep learning-based finger control. Journal of Neural Engineering, 2021, 18, 056051.	1.8	14
26	Deep Learning-Based Approaches for Decoding Motor Intent From Peripheral Nerve Signals. Frontiers in Neuroscience, 2021, 15, 667907.	1.4	10
27	1/f Neural Noise Reduction and Spike Feature Extraction Using a Subset of Informative Samples. Annals of Biomedical Engineering, 2011, 39, 1264-1277.	1.3	8
28	Redundant Crossfire: A Technique to Achieve Super-Resolution in Neurostimulator Design by Exploiting Transistor Mismatch. IEEE Journal of Solid-State Circuits, 2021, 56, 2452-2465.	3.5	8
29	Dexterous Hand Control Through Fascicular Targeting (HAPTIX-DEFT). Journal of Hand Surgery, 2017, 42, S8-S9.	0.7	7
30	The use of a novel carbon nanotube coated microelectrode array for chronic intracortical recording and microstimulation. , 2012, 2012, 791-4.		5
31	Fascicle-Specific Targeting of Longitudinal Intrafascicular Electrodes for Motor and Sensory Restoration in Upper-Limb Amputees. Hand Clinics, 2021, 37, 401-414.	0.4	4
32	Effects of carbon nanotube and conducting polymer coated microelectrodes on single-unit recordings in vitro. , 2014, 2014, 469-73.		3