Robina Begum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2619609/publications.pdf Version: 2024-02-01

ROBINA RECLIM

#	Article	IF	CITATIONS
1	Polymer hydrogels for stabilization of inorganic nanoparticles and their application in catalysis for degradation of toxic chemicals. Environmental Technology (United Kingdom), 2023, 44, 1679-1689.	2.2	6
2	Catalytic degradation of malachite green using a crosslinked colloidal polymeric system loaded with silver nanoparticles. International Journal of Environmental Analytical Chemistry, 2022, 102, 4104-4120.	3.3	26
3	Zero valent iron nanoparticles as sustainable nanocatalysts for reduction reactions. Catalysis Reviews - Science and Engineering, 2022, 64, 286-355.	12.9	20
4	Multi-functional organic–inorganic hydrogel microspheres as efficient catalytic system for reduction of toxic dyes in aqueous medium. Zeitschrift Fur Physikalische Chemie, 2022, 236, 87-105.	2.8	12
5	Modified alginate-chitosan-TiO2 composites for adsorptive removal of Ni(II) ions from aqueous medium. International Journal of Biological Macromolecules, 2022, 194, 117-127.	7.5	19
6	Polymer microgels for the stabilization of gold nanoparticles and their application in the catalytic reduction of nitroarenes in aqueous media. RSC Advances, 2022, 12, 5105-5117.	3.6	35
7	Facile synthesis and adsorption characteristics of a hybrid composite based on ethyl acetoacetate modified chitosan/calcium alginate/TiO ₂ for efficient recovery of Ni(II) from aqueous solution. Zeitschrift Fur Physikalische Chemie, 2022, 236, 595-618.	2.8	4
8	Synthesis of hybrid biosorbent based on 1,2-cyclohexylenedinitrilotetraacetic acid modified crosslinked chitosan and organo-functionalized calcium alginate for adsorptive removal of Cu(II). International Journal of Biological Macromolecules, 2022, 209, 132-143.	7.5	9
9	Extraction of copper ions from aqueous medium by microgel particles for in-situ fabrication of copper nanoparticles to degrade toxic dyes. Zeitschrift Fur Physikalische Chemie, 2022, 236, 1219-1241.	2.8	23
10	Methacrylic acid based microgels and hybrid microgels. Reviews in Chemical Engineering, 2022, .	4.4	1
11	Synthesis of novel quaternary ammonium salts from 1, 2-benzothiazine derivatives. Journal of Sulfur Chemistry, 2021, 42, 15-28.	2.0	2
12	Inorganic nanoparticles for reduction of hexavalent chromium: Physicochemical aspects. Journal of Hazardous Materials, 2021, 402, 123535.	12.4	95
13	Stabilization of silver nanoparticles in crosslinked polymer colloids through chelation for catalytic degradation of p-nitroaniline in aqueous medium. Chemical Physics Letters, 2021, 763, 138263.	2.6	25
14	Recyclable polymer microgel stabilized rhodium nanoparticles for reductive degradation of <i>para</i> -nitrophenol. Zeitschrift Fur Physikalische Chemie, 2021, 235, 1701-1719.	2.8	7
15	Silver nanoparticles supported on smart polymer microgel system for highly proficient catalytic reduction of Cr ⁺⁶ to Cr ⁺³ with formic acid. Applied Organometallic Chemistry, 2021, 35, e6405.	3.5	15
16	Gold nanoparticles and polymer microgels: Last five years of their happy and successful marriage. Journal of Molecular Liquids, 2021, 336, 116270.	4.9	47
17	Poly(styrene@N-isopropylmethacrylamide-co-methacrylic acid)@Ag hybrid particles with excellent catalytic potential. Journal of Molecular Liquids, 2021, 335, 116106.	4.9	30
18	Crosslinked polymer encapsulated palladium nanoparticles for catalytic reduction and Suzuki reactions in aqueous medium. Journal of Molecular Liquids, 2021, 338, 116780.	4.9	16

ROBINA BEGUM

#	Article	IF	CITATIONS
19	Physicochemical aspects of inorganic nanoparticles stabilized in <i>N</i> -vinyl caprolactam based microgels for various applications. RSC Advances, 2021, 11, 978-995.	3.6	4
20	Chemical reduction of methylene blue in the presence of nanocatalysts: a critical review. Reviews in Chemical Engineering, 2020, 36, 749-770.	4.4	86
21	Hybrid Microgels for Catalytic and Photocatalytic Removal of Nitroarenes and Organic Dyes From Aqueous Medium: A Review. Critical Reviews in Analytical Chemistry, 2020, 50, 513-537.	3.5	48
22	Physicochemical aspects of reduction of 3-Nitroaniline using methacrylamide based nano-hybrid catalyst. Chemical Physics Letters, 2020, 759, 137992.	2.6	2
23	Silver nanoparticles stabilized in polymer hydrogels for catalytic degradation of azo dyes. Ecotoxicology and Environmental Safety, 2020, 202, 110924.	6.0	70
24	Synthesis and characterization of poly(N-isopropylmethacrylamide-acrylic acid) smart polymer microgels for adsorptive extraction of copper(II) and cobalt(II) from aqueous medium: kinetic and thermodynamic aspects. Environmental Science and Pollution Research, 2020, 27, 28169-28182.	5.3	26
25	Coreâ€shell microgel stabilized silver nanoparticles for catalytic reduction of aryl nitro compounds. Applied Organometallic Chemistry, 2020, 34, e5742.	3.5	20
26	Extraction of cobalt ions from aqueous solution by microgels for in-situ fabrication of cobalt nanoparticles to degrade toxic dyes: A two fold-environmental application. Chemical Physics Letters, 2020, 754, 137645.	2.6	66
27	Systematic study of catalytic degradation of nitrobenzene derivatives using core@shell composite micro particles as catalyst. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 594, 124646.	4.7	17
28	Removal of Cadmium (II) from Aqueous Medium Using <i>Vigna radiata</i> Leave Biomass: Equilibrium Isotherms, Kinetics and Thermodynamics. Zeitschrift Fur Physikalische Chemie, 2019, 233, 669-690.	2.8	15
29	Extraction of Heavy Metals from Aqueous Medium by Husk Biomass: Adsorption Isotherm, Kinetic and Thermodynamic study. Zeitschrift Fur Physikalische Chemie, 2019, 233, 201-223.	2.8	42
30	Reduction of nitroarenes catalyzed by microgel-stabilized silver nanoparticles. Journal of Hazardous Materials, 2019, 377, 399-408.	12.4	67
31	Fundamentals and applications of acrylamide based microgels and their hybrids: a review. RSC Advances, 2019, 9, 13838-13854.	3.6	19
32	Methanol as hydrogen source: Chemoselective transfer hydrogenation of α,β-unsaturated ketones with a rhodacycle. Chinese Journal of Catalysis, 2019, 40, 1795-1799.	14.0	14
33	Catalytic reduction of toxic dyes in the presence of silver nanoparticles impregnated core-shell composite microgels. Journal of Cleaner Production, 2019, 211, 855-864.	9.3	101
34	Adsorptive removal of heavy metal ions using polystyrene-poly(N-isopropylmethacrylamide-acrylic) Tj ETQq0 0 0 2019, 277, 522-531.	rgBT /Ove 4.9	rlock 10 Tf 50 98
35	Facile synthesis of silver nanoparticles in a crosslinked polymeric system by in situ reduction method for catalytic reduction of 4-nitroaniline. Environmental Technology (United Kingdom), 2019, 40, 2027-2036.	2.2	68
36	Advancement in Multi-Functional Poly(styrene)-Poly(N-isopropylacrylamide) Based Core–Shell Microgels and their Applications. Polymer Reviews, 2018, 58, 288-325.	10.9	47

ROBINA BEGUM

#	Article	IF	CITATIONS
37	Engineering of responsive polymer based nano-reactors for facile mass transport and enhanced catalytic degradation of 4-nitrophenol. Journal of Environmental Sciences, 2018, 72, 43-52.	6.1	34
38	A systematic study for removal of heavy metals from aqueous media using Sorghum bicolor: an efficient biosorbent. Water Science and Technology, 2018, 77, 2355-2368.	2.5	22
39	Applications of UV/Vis Spectroscopy in Characterization and Catalytic Activity of Noble Metal Nanoparticles Fabricated in Responsive Polymer Microgels: A Review. Critical Reviews in Analytical Chemistry, 2018, 48, 503-516.	3.5	101
40	Removal of Congo red dye from aqueous medium by its catalytic reduction using sodium borohydride in the presence of various inorganic nano-catalysts: A review. Journal of Cleaner Production, 2018, 187, 296-307.	9.3	210
41	Designed synthesis of silver nanoparticles in responsive polymeric system for their thermally tailored catalytic activity towards hydrogenation reaction. Korean Journal of Chemical Engineering, 2018, 35, 1099-1107.	2.7	27
42	Synthesis and characterization of inorganic–organic polymer microgels for catalytic reduction of 4â€nitroaniline in aqueous medium. Polymer Composites, 2018, 39, 645-653.	4.6	47
43	Platinum nanoparticles fabricated multiresponsive microgel composites: Synthesis, characterization, and applications. Polymer Composites, 2018, 39, 2167-2180.	4.6	31
44	Synthesis and characterization of poly(N-isopropylmethacrylamide-co-acrylic acid) microgels for in situ fabrication and stabilization of silver nanoparticles for catalytic reduction of o-nitroaniline in aqueous medium. Reactive and Functional Polymers, 2018, 132, 89-97.	4.1	44
45	Synthesis and Characterization of pH-Responsive Organic–Inorganic Hybrid Material with Excellent Catalytic Activity. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 1872-1884.	3.7	22
46	Poly(N-isopropylmethacrylamide-acrylic acid) microgels as adsorbent for removal of toxic dyes from aqueous medium. Journal of Molecular Liquids, 2018, 268, 229-238.	4.9	47
47	Silver Nanoparticles Engineered Polystyreneâ€Poly(Nâ€isopropylmethacrylamideâ€acrylic acid) Core Shell Hybrid Polymer Microgels for Catalytic Reduction of Congo Red. Macromolecular Chemistry and Physics, 2018, 219, 1800211.	2.2	47
48	Temperature-responsive hybrid microgels for catalytic applications: a review. Materials Science and Technology, 2017, 33, 129-137.	1.6	56
49	Catalytic reduction of 2-nitroaniline: a review. Environmental Science and Pollution Research, 2017, 24, 6446-6460.	5.3	99
50	Catalytic reduction of 4â€nitrophenol using silver nanoparticlesâ€engineered poly(<i>N</i> â€isopropylacrylamideâ€ <i>co</i> â€acrylamide) hybrid microgels. Applied Organometallic Chemistry, 2017, 31, e3563.	3.5	99
51	Simultaneous catalytic reduction of nitroarenes using silver nanoparticles fabricated in poly(N) Tj ETQq1 1 0.78 Engineering Aspects, 2016, 511, 17-26.	4314 rgB1 4.7	Överlock 1 88
52	Physical chemistry of catalytic reduction of nitroarenes using various nanocatalytic systems: past, present, and future. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	78
53	Current statins show calcium channel blocking activity through voltage gated channels. BMC Pharmacology & Toxicology, 2016, 17, 43.	2.4	11
54	Fabrication of silver nanoparticles in pH responsive polymer microgel dispersion for catalytic reduction of nitrobenzene in aqueous medium. Russian Journal of Physical Chemistry A, 2016, 90, 2600-2608.	0.6	33

#	Article	IF	CITATIONS
55	Poly(N-isopropylacrylamide-acrylic acid) copolymer microgels for various applications: A review. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 841-852.	3.4	38

56 Kinetics and mechanism of reduction of nitrobenzene catalyzed by silver-poly(N-isopropylacryl) Tj ETQq000 rgBT / $\frac{10}{56}$ Tf 50 70.

57	Synthesis of Ion Imprinted Polymers by Copolymerization of Zn(II) and Al(III)8-hydroxy Quinolone Complexes with Divinylbenzene and Methacryclic Acid. Polymer-Plastics Technology and Engineering, 2016, 55, 1460-1473.	1.9	4
58	A review of responsive hybrid microgels fabricated with silver nanoparticles: synthesis, classification, characterization and applications. Journal of Sol-Gel Science and Technology, 2016, 77, 497-515.	2.4	77
59	Review on synthesis, properties, characterization, and applications of responsive microgels fabricated with gold nanostructures. Reviews in Chemical Engineering, 2016, 32, .	4.4	40
60	Engineering of silver nanoparticle fabricated poly (N-isopropylacrylamide-co-acrylic acid) microgels for rapid catalytic reduction of nitrobenzene. Journal of Polymer Engineering, 2016, 36, 87-96.	1.4	53
61	Poly(N-isopropylacrylamide-co-methacrylic acid) microgel stabilized copper nanoparticles for catalytic reduction of nitrobenzene. Materials Science-Poland, 2015, 33, 627-634.	1.0	25
62	Synthesis, characterization and fabrication of copper nanoparticles in N-isopropylacrylamide based co-polymer microgels for degradation of p-nitrophenol. Materials Science-Poland, 2015, 33, 185-192.	1.0	32
63	Effect of acrylic acid feed contents of microgels on catalytic activity of silver nanoparticles fabricated hybrid microgels. Turkish Journal of Chemistry, 2015, 39, 96-107.	1.2	37
64	Fabrication of silver nanoparticles in poly (N-isopropylacrylamide-co-allylacetic acid) microgels for catalytic reduction of nitroarenes. Turkish Journal of Chemistry, 2015, 39, 576-588.	1.2	37
65	Catalytic Reduction of 2-Nitroaniline in Aqueous Medium Using Silver Nanoparticles Functionalized Polymer Microgels. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 1554-1568.	3.7	72
66	Cobalt and nickel nanoparticles fabricated p(NIPAM-co-MAA) microgels for catalytic applications. E-Polymers, 2014, 14, 313-321.	3.0	43
67	Effect of crosslinker feed content on catalaytic activity of silver nanoparticles fabricated in multiresponsive microgels. Korean Journal of Chemical Engineering, 2014, 31, 1674-1680.	2.7	56