Quoc Bao Pham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2618804/publications.pdf

Version: 2024-02-01

148	4,917	38 h-index	59
papers	citations		g-index
151	151	151	2256
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Flood susceptibility modelling using advanced ensemble machine learning models. Geoscience Frontiers, 2021, 12, 101075.	4.3	207
2	GIS-based comparative assessment of flood susceptibility mapping using hybrid multi-criteria decision-making approach, naÃ-ve Bayes tree, bivariate statistics and logistic regression: A case of Topľa basin, Slovakia. Ecological Indicators, 2020, 117, 106620.	2.6	188
3	Flash-Flood Susceptibility Assessment Using Multi-Criteria Decision Making and Machine Learning Supported by Remote Sensing and GIS Techniques. Remote Sensing, 2020, 12, 106.	1.8	150
4	GIS-based landslide susceptibility modeling: A comparison between fuzzy multi-criteria and machine learning algorithms. Geoscience Frontiers, 2021, 12, 857-876.	4.3	136
5	Application of remote sensing and machine learning algorithms for forest fire mapping in a Mediterranean area. Ecological Indicators, 2021, 129, 107869.	2.6	130
6	Flood susceptibility modeling in Teesta River basin, Bangladesh using novel ensembles of bagging algorithms. Stochastic Environmental Research and Risk Assessment, 2020, 34, 2277-2300.	1.9	116
7	Deep learning convolutional neural network in rainfall–runoff modelling. Journal of Hydroinformatics, 2020, 22, 541-561.	1.1	109
8	Flash-flood susceptibility mapping based on XGBoost, random forest and boosted regression trees. Geocarto International, 2022, 37, 5479-5496.	1.7	100
9	Spatial prediction of landslide susceptibility in western Serbia using hybrid support vector regression (SVR) with GWO, BAT and COA algorithms. Geoscience Frontiers, 2021, 12, 101104.	4.3	97
10	Comparative assessment of the flash-flood potential within small mountain catchments using bivariate statistics and their novel hybrid integration with machine learning models. Science of the Total Environment, 2020, 711, 134514.	3.9	94
11	Evolutionary computational intelligence algorithm coupled with self-tuning predictive model for water quality index determination. Journal of Hydrology, 2020, 587, 124974.	2.3	88
12	Potential of Hybrid Data-Intelligence Algorithms for Multi-Station Modelling of Rainfall. Water Resources Management, 2019, 33, 5067-5087.	1.9	87
13	Support vector regression optimized by meta-heuristic algorithms for daily streamflow prediction. Stochastic Environmental Research and Risk Assessment, 2020, 34, 1755-1773.	1.9	87
14	A comparison among fuzzy multi-criteria decision making, bivariate, multivariate and machine learning models in landslide susceptibility mapping. Geomatics, Natural Hazards and Risk, 2021, 12, 1741-1777.	2.0	83
15	Seasonality shift and streamflow flow variability trends in central India. Acta Geophysica, 2020, 68, 1461-1475.	1.0	80
16	Novel hybrid models between bivariate statistics, artificial neural networks and boosting algorithms for flood susceptibility assessment. Journal of Environmental Management, 2020, 265, 110485.	3.8	76
17	Spatial predicting of flood potential areas using novel hybridizations of fuzzy decision-making, bivariate statistics, and machine learning. Journal of Hydrology, 2020, 585, 124808.	2.3	7 5
18	Adaptive neuro-fuzzy inference system coupled with shuffled frog leaping algorithm for predicting river streamflow time series. Hydrological Sciences Journal, 2020, 65, 1738-1751.	1.2	75

#	Article	lF	Citations
19	Delineation of groundwater potential zones for sustainable development and planning using analytical hierarchy processÂ(AHP), and MIFÂ techniques. Applied Water Science, 2021, 11, .	2.8	73
20	Implementation of data intelligence models coupled with ensemble machine learning for prediction of water quality index. Environmental Science and Pollution Research, 2020, 27, 41524-41539.	2.7	68
21	Emerging evolutionary algorithm integrated with kernel principal component analysis for modeling the performance of a water treatment plant. Journal of Water Process Engineering, 2020, 33, 101081.	2.6	67
22	Groundwater level prediction using machine learning algorithms in a drought-prone area. Neural Computing and Applications, 2022, 34, 10751-10773.	3.2	64
23	Flood susceptibility mapping and assessment using a novel deep learning model combining multilayer perceptron and autoencoder neural networks. Journal of Flood Risk Management, 2021, 14, e12683.	1.6	62
24	Developing Novel Robust Models to Improve the Accuracy of Daily Streamflow Modeling. Water Resources Management, 2020, 34, 3387-3409.	1.9	60
25	Application of an artificial intelligence technique enhanced with intelligent water drops for monthly reference evapotranspiration estimation. Agricultural Water Management, 2021, 244, 106622.	2.4	57
26	Improving the Resolution of GRACE Data for Spatio-Temporal Groundwater Storage Assessment. Remote Sensing, 2021, 13, 3513.	1.8	53
27	Hybrid Machine Learning Ensemble Techniques for Modeling Dissolved Oxygen Concentration. IEEE Access, 2020, 8, 157218-157237.	2.6	51
28	Machine learning algorithm-based risk assessment of riparian wetlands in Padma River Basin of Northwest Bangladesh. Environmental Science and Pollution Research, 2021, 28, 34450-34471.	2.7	49
29	Spatial modeling and susceptibility zonation of landslides using random forest, naÃve bayes and K-nearest neighbor in a complicated terrain. Earth Science Informatics, 2021, 14, 1227-1243.	1.6	48
30	Flash-Flood Potential Mapping Using Deep Learning, Alternating Decision Trees and Data Provided by Remote Sensing Sensors. Sensors, 2021, 21, 280.	2.1	48
31	Quantitative assessment of regional land use and climate change impact on runoff across Gilgit watershed. Environmental Earth Sciences, 2021, 80, 1.	1.3	48
32	Sanitary landfill site selection by integrating AHP and FTOPSIS with GIS: a case study of Memari Municipality, India. Environmental Science and Pollution Research, 2021, 28, 7528-7550.	2.7	47
33	New neural fuzzy-based machine learning ensemble for enhancing the prediction accuracy of flood susceptibility mapping. Hydrological Sciences Journal, 2020, 65, 2816-2837.	1.2	46
34	Using GIS, Remote Sensing, and Machine Learning to Highlight the Correlation between the Land-Use/Land-Cover Changes and Flash-Flood Potential. Remote Sensing, 2020, 12, 1422.	1.8	46
35	Innovative and polygonal trend analyses applications for rainfall data in Vietnam. Theoretical and Applied Climatology, 2021, 144, 809-822.	1.3	46
36	Combing Random Forest and Least Square Support Vector Regression for Improving Extreme Rainfall Downscaling. Water (Switzerland), 2019, 11, 451.	1.2	44

#	Article	IF	Citations
37	The optimal alternative for quantifying reference evapotranspiration in climatic sub-regions of Bangladesh. Scientific Reports, 2020, 10, 20171.	1.6	44
38	Comparison of multi-criteria-analytical hierarchy process and machine learning-boosted tree models for regional flood susceptibility mapping: a case study from Slovakia. Geomatics, Natural Hazards and Risk, 2021, 12, 1153-1180.	2.0	44
39	Soil Management Effects on Soil Water Erosion and Runoff in Central Syria—A Comparative Evaluation of General Linear Model and Random Forest Regression. Water (Switzerland), 2020, 12, 2529.	1.2	43
40	Simulating Future Flows and Salinity Intrusion Using Combined One- and Two-Dimensional Hydrodynamic Modellingâ€"The Case of Hau River, Vietnamese Mekong Delta. Water (Switzerland), 2018, 10, 897.	1.2	40
41	Characterization of the 2014 Indus River Flood Using Hydraulic Simulations and Satellite Images. Remote Sensing, 2021, 13, 2053.	1.8	40
42	Downscaling rainfall using deep learning long shortâ€term memory and feedforward neural network. International Journal of Climatology, 2019, 39, 4170-4188.	1.5	38
43	Application of soft computing to predict water quality in wetland. Environmental Science and Pollution Research, 2021, 28, 185-200.	2.7	38
44	Application of entropy weighting method for urban flood hazard mapping. Acta Geophysica, 2021, 69, 841-854.	1.0	37
45	Groundwater flow modeling in the basaltic hard rock area of Maharashtra, India. Applied Water Science, 2022, 12, 1.	2.8	35
46	Estimating Human Impacts on Soil Erosion Considering Different Hillslope Inclinations and Land Uses in the Coastal Region of Syria. Water (Switzerland), 2020, 12, 2786.	1.2	34
47	Hybrid model to improve the river streamflow forecasting utilizing multi-layer perceptron-based intelligent water drop optimization algorithm. Soft Computing, 2020, 24, 18039-18056.	2.1	34
48	A novel approach for predicting daily pan evaporation in the coastal regions of Iran using support vector regression coupled with krill herd algorithm model. Theoretical and Applied Climatology, 2020, 142, 349-367.	1.3	32
49	Assessing landslide susceptibility using a machine learning-based approach to achieving land degradation neutrality. Environmental Earth Sciences, 2021, 80, 1.	1.3	32
50	Implementing novel hybrid models to improve indirect measurement of the daily soil temperature: Elman neural network coupled with gravitational search algorithm and ant colony optimization. Measurement: Journal of the International Measurement Confederation, 2020, 165, 108127.	2.5	30
51	Time-Series Prediction of Streamflows of Malaysian Rivers Using Data-Driven Techniques. Journal of Irrigation and Drainage Engineering - ASCE, 2020, 146, .	0.6	30
52	Developing hybrid time series and artificial intelligence models for estimating air temperatures. Stochastic Environmental Research and Risk Assessment, 2021, 35, 1189-1204.	1.9	30
53	Coupling Singular Spectrum Analysis with Least Square Support Vector Machine to Improve Accuracy of SPI Drought Forecasting. Water Resources Management, 2021, 35, 847-868.	1.9	30
54	Detection of areas prone to flood risk using state-of-the-art machine learning models. Geomatics, Natural Hazards and Risk, 2021, 12, 1488-1507.	2.0	30

#	Article	IF	CITATIONS
55	Integrating water quality index, GIS and multivariate statistical techniques towards a better understanding of drinking water quality. Environmental Science and Pollution Research, 2022, 29, 26860-26876.	2.7	30
56	Assessment of land suitability potentials for winter wheat cultivation by using a multi criteria decision Support- Geographic information system (MCDS-GIS) approach in Al-Yarmouk Basin (Syria). Geocarto International, 2022, 37, 1645-1663.	1.7	28
57	Deep learning and boosting framework for piping erosion susceptibility modeling: spatial evaluation of agricultural areas in the semi-arid region. Geocarto International, 2022, 37, 4628-4654.	1.7	27
58	Improved Rainfall Prediction Using Combined Pre-Processing Methods and Feed-Forward Neural Networks. J, 2019, 2, 65-83.	0.6	25
59	Monitoring forest landcover changes in the Eastern Sundarban of Bangladesh from 1989 to 2019. Acta Geophysica, 2021, 69, 561-577.	1.0	25
60	Flood susceptibility modeling based on new hybrid intelligence model: Optimization of XGboost model using GA metaheuristic algorithm. Advances in Space Research, 2022, 69, 3301-3318.	1,2	25
61	Development of an integrated peri-urban wetland degradation assessment approach for the Chatra Wetland in eastern India. Scientific Reports, 2021, 11, 4470.	1.6	24
62	Efficiency of Geospatial Technology and Multi-Criteria Decision Analysis for Groundwater Potential Mapping in a Semi-Arid Region. Water (Switzerland), 2022, 14, 882.	1,2	24
63	Flood prioritization integrating picture fuzzy-analytic hierarchy and fuzzy-linear assignment model. Arabian Journal of Geosciences, 2022, 15, .	0.6	24
64	Hybrid Machine Learning Approach for Gully Erosion Mapping Susceptibility at a Watershed Scale. ISPRS International Journal of Geo-Information, 2022, 11, 401.	1.4	24
65	Linking Singular Spectrum Analysis and Machine Learning for Monthly Rainfall Forecasting. Applied Sciences (Switzerland), 2020, 10, 3224.	1.3	23
66	Enhancing the Prediction Accuracy of Data-Driven Models for Monthly Streamflow in Urmia Lake Basin Based upon the Autoregressive Conditionally Heteroskedastic Time-Series Model. Applied Sciences (Switzerland), 2020, 10, 571.	1.3	23
67	Predicting soil erosion hazard in Lattakia Governorate (W Syria). International Journal of Sediment Research, 2021, 36, 207-220.	1.8	23
68	Integrating \hat{A} feature extraction approaches with hybrid emotional neural networks for water quality index modeling. Applied Soft Computing Journal, 2022, 114, 108036.	4.1	23
69	Random forest and nature-inspired algorithms for mapping groundwater nitrate concentration in a coastal multi-layer aquifer system. Journal of Cleaner Production, 2022, 343, 130900.	4.6	23
70	Modelling and mapping of soil erosion susceptibility using machine learning in a tropical hot sub-humid environment. Journal of Cleaner Production, 2022, 364, 132428.	4.6	23
71	Simulating Caspian Sea surface water level by artificial neural network and support vector machine models. Acta Geophysica, 2020, 68, 553-563.	1.0	22
72	Recognition of district-wise groundwater stress zones using the GLDAS-2 catchment land surface model during lean season in the Indian state of West Bengal. Acta Geophysica, 2021, 69, 175-198.	1.0	22

#	Article	IF	CITATIONS
73	Flash-flood potential index estimation using fuzzy logic combined with deep learning neural network, naÃ-ve Bayes, XGBoost and classification and regression tree. Geocarto International, 2022, 37, 6780-6807.	1.7	22
74	Predicting landslide susceptibility based on decision tree machine learning models under climate and land use changes. Geocarto International, 2022, 37, 7881-7907.	1.7	21
75	Multi attributive ideal-real comparative analysis (MAIRCA) method for evaluating flood susceptibility in a temperate Mediterranean climate. Hydrological Sciences Journal, 2022, 67, 401-418.	1.2	21
76	Development of fuzzy analytic hierarchy process based water quality model of Upper Ganga river basin, India. Journal of Environmental Management, 2021, 284, 111985.	3.8	20
77	Modelling and accessing land degradation vulnerability using remote sensing techniques and the analytical hierarchy process approach. Geocarto International, 2022, 37, 7122-7142.	1.7	20
78	Development of Boosted Machine Learning Models for Estimating Daily Reference Evapotranspiration and Comparison with Empirical Approaches. Water (Switzerland), 2021, 13, 3489.	1.2	20
79	Identification of EDI trend using Mann-Kendall and Åžen-Innovative Trend methods (Uttarakhand, India). Arabian Journal of Geosciences, 2020, 13, 1.	0.6	19
80	Optimization of statistical and machine learning hybrid models for groundwater potential mapping. Geocarto International, 2022, 37, 3877-3911.	1.7	19
81	Sentinelâ€1 remote sensing data and Hydrologic Engineering Centres River Analysis System twoâ€dimensional integration for flash flood detection and modelling in New Cairo City, Egypt. Journal of Flood Risk Management, 2021, 14, e12692.	1.6	19
82	An integrated approach for evaluating the flash flood risk and potential erosion using the hydrologic indices and morpho-tectonic parameters. Environmental Earth Sciences, 2021, 80, 1.	1.3	19
83	Flash-flood propagation susceptibility estimation using weights of evidence and their novel ensembles with multicriteria decision making and machine learning. Geocarto International, 2022, 37, 8361-8393.	1.7	19
84	An ensemble random forest tree with SVM, ANN, NBT, and LMT for landslide susceptibility mapping in the Rangit River watershed, India. Natural Hazards, 2022, 113, 1601-1633.	1.6	19
85	A new hybrid model based on relevance vector machine with flower pollination algorithm for phycocyanin pigment concentration estimation. Environmental Science and Pollution Research, 2021, 28, 32564-32579.	2.7	18
86	Groundwater potential assessment as a preliminary step to solving water scarcity challenges in Ekpoma, Edo State, Nigeria. Acta Geophysica, 2021, 69, 1367-1381.	1.0	18
87	Using machine learning methods for supporting GR2M model in runoff estimation in an ungauged basin. Scientific Reports, $2021, 11, 19955$.	1.6	18
88	Comparison of analytic network process and artificial neural network models for flash flood susceptibility assessment. Journal of African Earth Sciences, 2022, 193, 104576.	0.9	18
89	Performance Evaluation of a Two-Parameters Monthly Rainfall-Runoff Model in the Southern Basin of Thailand. Water (Switzerland), 2021, 13, 1226.	1.2	17
90	Developing a new approach for design support of subsurface constructed wetland using machine learning algorithms. Journal of Environmental Management, 2022, 301, 113868.	3.8	17

#	Article	IF	CITATIONS
91	An Integrated Approach for Delineating and Characterizing Groundwater Depletion Hotspots in a Coastal State of India. Journal of the Geological Society of India, 2021, 97, 1429-1440.	0.5	17
92	Head-cut gully erosion susceptibility modelling based on ensemble Random Forest with oblique decision trees in Fareghan watershed, Iran. Geomatics, Natural Hazards and Risk, 2020, 11, 2385-2410.	2.0	16
93	A modified approach to quantify aquifer vulnerability to pollution towards sustainable groundwater management in Irrigated Indus Basin. Environmental Science and Pollution Research, 2022, 29, 27257-27278.	2.7	16
94	Evaluation of debris flow and landslide hazards using ensemble framework of Bayesian- and tree-based models. Bulletin of Engineering Geology and the Environment, 2022, $81,1.$	1.6	16
95	Modelling seasonal flows alteration in the Vietnamese Mekong Delta under upstream discharge changes, rainfall changes and sea level rise. International Journal of River Basin Management, 2019, 17, 435-449.	1.5	15
96	Evaluation of re-sampling methods on performance of machine learning models to predict landslide susceptibility. Geocarto International, 2022, 37, 2772-2794.	1.7	15
97	GIS-Based Spatial and Multi-Criteria Assessment of Riverine Flood Potential: A Case Study of the Nitra River Basin, Slovakia. ISPRS International Journal of Geo-Information, 2021, 10, 578.	1.4	15
98	Understanding temporary reduction in atmospheric pollution and its impacts on coastal aquatic system during COVID-19 lockdown: a case study of South Asia. Geomatics, Natural Hazards and Risk, 2021, 12, 560-580.	2.0	15
99	An Ensemble Framework to Investigate Wind Energy Sustainability Considering Climate Change Impacts. Sustainability, 2020, 12, 876.	1.6	14
100	Evaluation of various boosting ensemble algorithms for predicting flood hazard susceptibility areas. Geomatics, Natural Hazards and Risk, 2021, 12, 2607-2628.	2.0	14
101	Integrated Framework for Detecting the Areas Prone to Flooding Generated by Flash-Floods in Small River Catchments. Water (Switzerland), 2021, 13, 758.	1.2	14
102	Flood prediction based on climatic signals using wavelet neural network. Acta Geophysica, 2021, 69, 1413-1426.	1.0	14
103	Modelling of Bunus regional sewage treatment plant using machine learning approaches. , 0, 203, 80-90.		14
104	Consideration of spatial heterogeneity in landslide susceptibility mapping using geographical random forest model. Geocarto International, 2022, 37, 8190-8213.	1.7	14
105	Urban flood vulnerability assessment in a densely urbanized city using multi-factor analysis and machine learning algorithms. Theoretical and Applied Climatology, 2022, 149, 639-659.	1.3	14
106	Flood vulnerability and buildings' flood exposure assessment in a densely urbanised city: comparative analysis of threeAscenarios using a neural network approach. Natural Hazards, 2022, 113, 1043-1081.	1.6	13
107	Applications of Data-driven Models for Daily Discharge Estimation Based on Different Input Combinations. Water Resources Management, 2022, 36, 2201-2221.	1.9	13
108	Application of complex networks for monthly rainfall dynamics over central Vietnam. Stochastic Environmental Research and Risk Assessment, 2021, 35, 535-548.	1.9	12

#	Article	IF	Citations
109	Assessing the potential and hydrological usefulness of the CHIRPS precipitation dataset over a complex topography in Pakistan. Hydrological Sciences Journal, 2021, 66, 1664-1684.	1.2	12
110	Detection of areas prone to flood-induced landslides risk using certainty factor and its hybridization with FAHP, XGBoost and deep learning neural network. Geocarto International, 2022, 37, 7303-7338.	1.7	12
111	Prediction of groundwater nitrate concentration in a semiarid region using hybrid Bayesian artificial intelligence approaches. Environmental Science and Pollution Research, 2022, 29, 20421-20436.	2.7	12
112	Flash flood susceptibility mapping in urban area using genetic algorithm and ensemble method. Geocarto International, 2022, 37, 10199-10228.	1.7	12
113	Evaluating the variability in long-term rainfall over India with advanced statistical techniques. Acta Geophysica, 2022, 70, 801-818.	1.0	12
114	Precipitation Forecasting in Northern Bangladesh Using a Hybrid Machine Learning Model. Sustainability, 2022, 14, 2663.	1.6	12
115	Application of ERA-Interim, empirical models, and an artificial intelligence-based model for estimating daily solar radiation. Ain Shams Engineering Journal, 2022, 13, 101498.	3.5	11
116	Assessment of spatio-temporal trends of satellite-based aerosol optical depth using Mann–Kendall test and Sen's slope estimator model. Geomatics, Natural Hazards and Risk, 2022, 13, 1270-1298.	2.0	11
117	A New Approach to Mapping Cultural Ecosystem Services. Environments - MDPI, 2021, 8, 56.	1.5	10
118	Observed Changes in Crop Yield Associated with Droughts Propagation via Natural and Human-Disturbed Agro-Ecological Zones of Pakistan. Remote Sensing, 2022, 14, 2152.	1.8	10
119	Modified Approach to Reduce GCM Bias in Downscaled Precipitation: A Study in Ganga River Basin. Water (Switzerland), 2019, 11, 2097.	1.2	9
120	An integrated geotechnical and geophysical investigation of a catastrophic landslide in the Northeast Himalayas of Pakistan. Geological Journal, 2021, 56, 4760-4778.	0.6	9
121	Estimation of Tasuj aquifer response to main meteorological parameter variations under Shared Socioeconomic Pathways scenarios. Theoretical and Applied Climatology, 2022, 149, 25-37.	1.3	9
122	Daily precipitation concentration in Central Coast Vietnam. Theoretical and Applied Climatology, 2022, 147, 37-45.	1.3	8
123	Spatio-temporal calibration of Hargreaves–Samani model in the Northern Region of Nigeria. Theoretical and Applied Climatology, 2022, 147, 1213-1228.	1.3	8
124	Cooling island effect of urban lakes in hot waves under foehn and climate change. Theoretical and Applied Climatology, 2022, 149, 817-830.	1.3	8
125	Assessing the potential of soil erosion in Kyrgyzstan based on RUSLE, integrated with remote sensing. Environmental Earth Sciences, 2021, 80, 1.	1.3	7
126	Validation of double averaged velocity method in a variable width river. Earth Science Informatics, 2021, 14, 2265.	1.6	7

#	Article	IF	Citations
127	Flow structure investigation over a pool-riffle sequence in a variable width river. Acta Geophysica, 2022, 70, 713-727.	1.0	7
128	Applicability of machine learning techniques for multi-time step ahead runoff forecasting. Acta Geophysica, 2022, 70, 757-776.	1.0	7
129	Application of revised innovative trend analysis in lower Drava River. Arabian Journal of Geosciences, 2022, 15, .	0.6	7
130	Multi sources hydrological assessment over Vu Gia Thu Bon Basin, Vietnam. Hydrological Sciences Journal, 2021, 66, 1383-1392.	1.2	6
131	Estimating Yield and Water Productivity of Tomato Using a Novel Hybrid Approach. Water (Switzerland), 2021, 13, 3615.	1.2	6
132	Improvement of the predictive performance of landslide mapping models in mountainous terrains using cluster sampling. Geocarto International, 2022, 37, 12294-12337.	1.7	6
133	Characterization of drought using four drought indices under climate change in the Sahel region of Nigeria: 1981–2015. Theoretical and Applied Climatology, 2021, 143, 843-860.	1.3	5
134	Effective discharge computation in the lower Drava River. Hydrological Sciences Journal, 2021, 66, 826-837.	1.2	5
135	Credibility of design rainfall estimates for drainage infrastructures: extent of disregard in Nigeria and proposed framework for practice. Natural Hazards, 0 , 1 .	1.6	5
136	Identification and characterization the sources of aerosols over Jharkhand state and surrounding areas, India using AHP model. Geomatics, Natural Hazards and Risk, 2021, 12, 2194-2224.	2.0	5
137	Estimating Baseflow and Baseflow Index in Ungauged Basins Using Spatial Interpolation Techniques: A Case Study of the Southern River Basin of Thailand. Water (Switzerland), 2021, 13, 3113.	1.2	5
138	Current and future projections of flood risk dynamics under seasonal precipitation regimes in the Hyrcanian Forest region. Geocarto International, 2022, 37, 9047-9070.	1.7	5
139	Multifractal characterization and cross correlations of reference evapotranspiration time series of India. European Physical Journal: Special Topics, 2021, 230, 3845-3859.	1.2	5
140	Evaluating novel hybrid models based on GIS for snow avalanche susceptibility mapping: A comparative study. Cold Regions Science and Technology, 2022, 194, 103453.	1.6	5
141	Assessment of change in the extent of mangrove ecosystems using different spectral indices in Google Earth Engine based on random forest model. Arabian Journal of Geosciences, 2022, 15, .	0.6	4
142	A Water Supply Pipeline Risk Analysis Methodology Based on DIY and Hierarchical Fuzzy Inference. Symmetry, 2020, 12, 44.	1.1	3
143	Grand Ethiopian Renaissance Dam and hydrologic hegemony over Abbay Basin. Sustainable Water Resources Management, 2021, 7, 1.	1.0	3
144	A hybrid feed-forward neural network with grasshopper optimization for observing pattern of scour depth around bridge piers. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	3

#	Article	IF	CITATIONS
145	Monitoring agricultural and meteorological drought using remote sensing. Arabian Journal of Geosciences, 2022, 15, 1.	0.6	3
146	Evaluating the impact of the environment on depleting groundwater resources: a case study from a semi-arid and arid climatic region. Hydrological Sciences Journal, 2022, 67, 791-805.	1.2	2
147	Closure to "Time-Series Prediction of Streamflows of Malaysian Rivers Using Data-Driven Techniques― by Siraj Muhammed Pandhiani, Parveen Sihag, Ani Bin Shabri, Balraj Singh, and Quoc Bao Pham. Journal of Irrigation and Drainage Engineering - ASCE, 2021, 147, 07021015.	0.6	O
148	Investigating feasible sites for multi-purpose small dams in Swat District of Khyber Pakhtunkhwa Province, Pakistan: socioeconomic and environmental considerations. Environment, Development and Sustainability, 0 , 1 .	2.7	0