

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2618673/publications.pdf Version: 2024-02-01

ΕΛΝΙλλι

#	Article	IF	CITATIONS
1	Microporous polythiophene (MPT)-guest complex derived magnetic metal sulfides/carbon nanocomposites for broadband electromagnetic wave absorption. Journal of Materials Science and Technology, 2022, 100, 206-215.	10.7	48
2	Metal/nitrogen co-doped hollow carbon nanorods derived from self-assembly organic nanostructure for wide bandwidth electromagnetic wave absorption. Composites Part B: Engineering, 2022, 228, 109424.	12.0	87
3	Molten salt-directed Ni3S2/C nanocomposite with advanced dielectric and magnetic properties for efficient microwave absorption. Journal of Alloys and Compounds, 2022, 902, 163713.	5.5	14
4	Connecting of conjugate microporous polymer nanoparticles by polypyrrole via sulfonic acid doping to form conductive nanocomposites for excellent microwaves absorption. Composites Science and Technology, 2022, 221, 109350.	7.8	27
5	A facile molten salt synthesis route for a C/MoS2/Co9S8 complex with multiple heterogeneous interfaces and excellent dielectric and magnetic properties for effective microwave absorption. Ceramics International, 2022, 48, 20760-20768.	4.8	3
6	Electrically conductive Two-dimensional Metal-Organic frameworks for superior electromagnetic wave absorption. Chemical Engineering Journal, 2022, 446, 137409.	12.7	58
7	Dielectric properties and microwaves response behavior of polypyrrole-derived N-doped carbon nanotubes. Journal of Materials Science: Materials in Electronics, 2021, 32, 25820-25828.	2.2	1
8	Nickel-assisted synthesis of magnetic bamboo-shaped N-doped carbon nanostructure for excellent microwaves absorption. Synthetic Metals, 2021, 272, 116644.	3.9	18
9	Carbon encapsulation of MoS2 nanosheets to tune their interfacial polarization and dielectric properties for electromagnetic absorption applications. Journal of Materials Chemistry C, 2021, 9, 537-546.	5.5	13
10	A TTF–TCNQ complex: an organic charge-transfer system with extraordinary electromagnetic response behavior. Journal of Materials Chemistry C, 2021, 9, 3316-3323.	5.5	89
11	Tuning the Dielectric and Microwaves Absorption Properties of N-Doped Carbon Nanotubes by Boron Insertion. Nanomaterials, 2021, 11, 1164.	4.1	14
12	MOFâ ^{~•} Guest complex derived Cu/C nanocomposites with multiple heterogeneous interfaces for excellent electromagnetic waves absorption. Composites Part B: Engineering, 2021, 211, 108643.	12.0	83
13	Conductive Fibrous Metal yanoquinone Complexes with Excellent Microwave Absorption and Shielding Effectiveness at Ultrathin Thickness. Advanced Materials Interfaces, 2021, 8, 2100712.	3.7	20
14	Multiple-loss-enhanced NiOx@carbon spheres/reduced graphene oxide-based composite for tuneable elimination of electromagnetic signals. Ceramics International, 2021, 47, 18157-18166.	4.8	7
15	Ni@Carbon nanocomposites with hierarchical three-dimensional network for electromagnetic waves absorption. Ceramics International, 2021, 47, 27577-27585.	4.8	4
16	TTF-TCNQ derived N,S-codoped carbon with multiple macropores for excellent electromagnetic wave adsorption. Synthetic Metals, 2021, 280, 116877.	3.9	11
17	0D-1D-2D multidimensionally assembled Co9S8/CNTs/MoS2 composites for ultralight and broadband electromagnetic wave absorption. Chemical Engineering Journal, 2021, 423, 130132.	12.7	64
18	Controllable Fabrication of SiC@C-Fe3O4 Hybrids and Their Excellent Electromagnetic Absorption Properties. Nanomaterials, 2021, 11, 3438.	4.1	3

Fan Wu

#	Article	IF	CITATIONS
19	Protonic doping brings tuneable dielectric and electromagnetic attenuated properties for polypyrrole nanofibers. Chemical Engineering Journal, 2020, 381, 122615.	12.7	42
20	Highly Robust, Flexible, and Largeâ€Scale 3Dâ€Metallized Sponge for Highâ€Performance Electromagnetic Interference Shielding. Advanced Materials Technologies, 2020, 5, 1900761.	5.8	53
21	Dielectric loss behavior and microwaves absorption properties of TiB ₂ ceramic. Materials Research Express, 2020, 7, 046301.	1.6	8
22	Nano-porous carbon wrapped SiC nanowires with tunable dielectric properties for electromagnetic applications. Materials and Design, 2020, 192, 108738.	7.0	17
23	Hollow Polypyrrole Nanofiber-Based Self-Assembled Aerogel: Large-Scale Fabrication and Outstanding Performance in Electromagnetic Pollution Management. Industrial & Engineering Chemistry Research, 2020, 59, 7604-7610.	3.7	10
24	Conjugate Microporous Polymer-Derived Conductive Porous Carbon Nanoparticles with Narrow Pore-Size Distribution for Electromagnetic Interference Shielding. ACS Applied Nano Materials, 2020, 3, 4553-4561.	5.0	19
25	Electrically conductive conjugate microporous polymers (CMPs) via confined polymerization of pyrrole for electromagnetic wave absorption. Chemical Engineering Journal, 2020, 398, 125591.	12.7	60
26	Dual-Interfacial Polarization Enhancement to Design Tunable Microwave Absorption Nanofibers of SiC@C@PPy. ACS Applied Electronic Materials, 2020, 2, 1505-1513.	4.3	41
27	Magnetized polypyrrole and its enhanced electromagnetic attenuation performance. Applied Physics Letters, 2019, 115, 013101.	3.3	18
28	Two-dimensional copper(i) thiophenolates: a well-constructed conductive Cu–S network for excellent electromagnetic wave absorption. Journal of Materials Chemistry C, 2019, 7, 11621-11631.	5.5	10
29	Confined polymerization strategy to construct polypyrrole/zeolitic imidazolate frameworks (PPy/ZIFs) nanocomposites for tunable electrical conductivity and excellent electromagnetic absorption. Composites Science and Technology, 2019, 174, 232-240.	7.8	84
30	Room-temperature production of silver-nanofiber film for large-area, transparent and flexible surface electromagnetic interference shielding. Npj Flexible Electronics, 2019, 3, .	10.7	155
31	The synthesis of core–shell nanowires with intense dielectric and magnetic resonance properties at microwave frequency. Journal of Materials Chemistry C, 2019, 7, 3590-3597.	5.5	13
32	Controllable Coating of Polypyrrole on Silicon Carbide Nanowires as a Core–Shell Nanostructure: A Facile Method To Enhance Attenuation Characteristics against Electromagnetic Radiation. ACS Sustainable Chemistry and Engineering, 2019, 7, 2100-2106.	6.7	67
33	Sandwich CoFe ₂ O ₄ /RGO/CoFe ₂ O ₄ Nanostructures for High-Performance Electromagnetic Absorption. ACS Applied Nano Materials, 2019, 2, 315-324.	5.0	39
34	Cake-like flexible carbon nanotubes/graphene composite prepared via a facile method for high-performance electromagnetic interference shielding. Carbon, 2019, 145, 259-265.	10.3	55
35	Networks constructed by metal organic frameworks (MOFs) and multiwall carbon nanotubes (MCNTs) for excellent electromagnetic waves absorption. Materials Chemistry and Physics, 2018, 208, 198-206.	4.0	33
36	Tetrazole amphiphile inducing growth of conducting polymers hierarchical nanostructures and their electromagnetic absorption properties. Nanotechnology, 2018, 29, 215604.	2.6	10

Fan Wu

#	Article	IF	CITATIONS
37	Selfâ€Assembled 3D Helical Hollow Superstructures with Enhanced Microwave Absorption Properties. Macromolecular Rapid Communications, 2018, 39, 1700591.	3.9	34
38	Controlled hydrothermal temperature provides tunable permittivity and an improved electromagnetic absorption performance of reduced graphene oxide. RSC Advances, 2018, 8, 33065-33071.	3.6	7
39	Facile growth of coaxial Ag@polypyrrole nanowires for highly tunable electromagnetic waves absorption. Materials and Design, 2018, 154, 192-202.	7.0	84
40	Fe ₃ O ₄ nanoparticles decorated on a CuS platelet-based sphere: a popcorn chicken-like heterostructure as an ideal material against electromagnetic pollution. RSC Advances, 2018, 8, 17489-17496.	3.6	9
41	Two-dimensional (2D) few-layers WS2 nanosheets: An ideal nanomaterials with tunable electromagnetic absorption performance. Applied Physics Letters, 2018, 113, .	3.3	38
42	Controllable Fabrication of Fe3O4/ZnO Core–Shell Nanocomposites and Their Electromagnetic Wave Absorption Performance in the 2–18 GHz Frequency Range. Materials, 2018, 11, 780.	2.9	25
43	The effects of annealing temperature on the permittivity and electromagnetic attenuation performance of reduced graphene oxide. Applied Physics Letters, 2018, 112, .	3.3	45
44	Few-layer black phosphorus: A bright future in electromagnetic absorption. Materials Letters, 2017, 193, 30-33.	2.6	22
45	Chiral induced synthesis of helical polypyrrole (PPy) nano-structures: a lightweight and high-performance material against electromagnetic pollution. Journal of Materials Chemistry C, 2017, 5, 2175-2181.	5.5	134
46	Ultra-broad polypyrrole (PPy) nano-ribbons seeded by racemic surfactants aggregates and their high-performance electromagnetic radiation elimination. Nanotechnology, 2017, 28, 315701.	2.6	8
47	In Situ Stringing of Metal Organic Frameworks by SiC Nanowires for High-Performance Electromagnetic Radiation Elimination. ACS Applied Materials & Interfaces, 2017, 9, 33041-33048.	8.0	70
48	Electromagnetic dissipation on the surface of metal organic framework (MOF)/reduced graphene oxide (RGO) hybrids. Materials Chemistry and Physics, 2017, 199, 340-347.	4.0	55
49	Synthesis of hollow Cu _{1.8} S nano-cubes for electromagnetic interference shielding. Nanoscale, 2017, 9, 10961-10965.	5.6	31
50	Carboxyl multiwalled carbon nanotubes modified polypyrrole (PPy) aerogel for enhanced electromagnetic absorption. Materials Research Express, 2016, 3, 055008.	1.6	12
51	Three-dimensional (3D) α-Fe2O3/polypyrrole (PPy) nanocomposite for effective electromagnetic absorption. AIP Advances, 2016, 6, .	1.3	17
52	A core–shell polypyrrole@silicon carbide nanowire (PPy@SiC) nanocomposite for the broadband elimination of electromagnetic pollution. RSC Advances, 2016, 6, 43056-43059.	3.6	47
53	Microwave absorption of a TiO ₂ @PPy hybrid and its nonlinear dielectric resonant attenuation mechanism. Journal Physics D: Applied Physics, 2016, 49, 385502.	2.8	19
54	The hybrid of SnO2nanoparticle and polypyrrole aerogel: an excellent electromagnetic wave absorbing materials. Materials Research Express, 2016, 3, 075023.	1.6	12

Fan Wu

#	Article	IF	CITATIONS
55	Using γ-Fe ₂ O ₃ to tune the electromagnetic properties of three-dimensional (3D) polypyrrole (PPy) and its broadband electromagnetic absorber. RSC Advances, 2016, 6, 68128-68133.	3.6	16
56	In situ growth of MoS ₂ nanosheets on reduced graphene oxide (RGO) surfaces: interfacial enhancement of absorbing performance against electromagnetic pollution. Physical Chemistry Chemical Physics, 2016, 18, 24931-24936.	2.8	81
57	Growing 3D ZnO nano-crystals on 1D SiC nanowires: enhancement of dielectric properties and excellent electromagnetic absorption performance. Journal of Materials Chemistry C, 2016, 4, 8897-8902.	5.5	48
58	A self-assembly method for the fabrication of a three-dimensional (3D) polypyrrole (PPy)/poly(3,4-ethylenedioxythiophene) (PEDOT) hybrid composite with excellent absorption performance against electromagnetic pollution. Journal of Materials Chemistry C, 2016, 4, 82-88.	5.5	54
59	Solid-state synthesis of a conducting polythiophene as efficient Pt-free thin film counter electrode for dye-sensitized solar cells. Materials Letters, 2016, 174, 91-94.	2.6	10
60	Polydopamine nanofilms as visible light-harvesting interfaces for palladium nanocrystal catalyzed coupling reactions. Catalysis Science and Technology, 2016, 6, 1764-1771.	4.1	75
61	Interfacial synthesis of polypyrrole microparticles for effective dissipation of electromagnetic waves. Journal of Applied Physics, 2015, 118, .	2.5	38
62	Self-assembled ultralight three-dimensional polypyrrole aerogel for effective electromagnetic absorption. Applied Physics Letters, 2015, 106, .	3.3	100
63	Reduced graphene oxide (RGO) modified spongelike polypyrrole (PPy) aerogel for excellent electromagnetic absorption. Journal of Materials Chemistry A, 2015, 3, 14358-14369.	10.3	373
64	In situ preparation of ultralight three-dimensional polypyrrole/nano SiO 2 composite aerogels with enhanced electromagnetic absorption. Composites Science and Technology, 2015, 117, 32-38.	7.8	35
65	One-pot synthesis of biomass-derived carbonaceous spheres for excellent microwave absorption at the Ku band. RSC Advances, 2015, 5, 40531-40535.	3.6	41
66	Natural biological template for ZnO nanoparticle growth and photocatalytic dye degradation under visible light. RSC Advances, 2015, 5, 84406-84409.	3.6	13
67	The effect of etching temperature on the compositional and structural evolution of ceramer from polysiloxane in chlorine. Corrosion Science, 2015, 101, 132-138.	6.6	7
68	Hybrid of MoS ₂ and Reduced Graphene Oxide: A Lightweight and Broadband Electromagnetic Wave Absorber. ACS Applied Materials & Interfaces, 2015, 7, 26226-26234.	8.0	357
69	Two-step reduction of self-assembed three-dimensional (3D) reduced graphene oxide (RGO)/zinc oxide (ZnO) nanocomposites for electromagnetic absorption. Journal of Materials Chemistry A, 2014, 2, 20307-20315.	10.3	129
70	Electromagnetic interference shielding properties of solid-state polymerization conducting polymer. RSC Advances, 2014, 4, 38797.	3.6	24
71	Using organic solvent absorption as a self-assembly method to synthesize three-dimensional (3D) reduced graphene oxide (RGO)/poly(3,4-ethylenedioxythiophene) (PEDOT) architecture and its electromagnetic absorption properties. RSC Advances, 2014, 4, 49780-49782.	3.6	30
72	Facile Synthesis of Poly(3,4-ethylenedioxythiophene) Film via Solid-State Polymerization as High-Performance Pt-Free Counter Electrodes for Plastic Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 8423-8429.	8.0	68

#	Article	IF	CITATIONS
73	Facile Preparation of Poly(vinyl alcohol)/Graphene Oxide/SiO ₂ Composites and Their Mechanical and Thermal Properties. Graphene, 2013, 1, 120-123.	0.2	2