Ana I Gonçalves

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2618031/publications.pdf Version: 2024-02-01

<u>ΑΝΑ Ι CONÃ8ΑLVES</u>

#	Article	IF	CITATIONS
1	The impact of cryopreservation in signature markers and immunomodulatory profile of tendon and ligament derived cells. Journal of Cellular Physiology, 2022, 237, 675-686.	2.0	3
2	Magnetic triggers in biomedical applications – prospects for contact free cell sensing and guidance. Journal of Materials Chemistry B, 2021, 9, 1259-1271.	2.9	7
3	Multiscale Multifactorial Approaches for Engineering Tendon Substitutes. Reference Series in Biomedical Engineering, 2021, , 507-530.	0.1	0
4	Hyaluronic Acid Oligomer Immobilization as an Angiogenic Trigger for the Neovascularization of TE Constructs. ACS Applied Bio Materials, 2021, 4, 6023-6035.	2.3	2
5	Human tendon-derived cell sheets created by magnetic force-based tissue engineering hold tenogenic and immunomodulatory potential. Acta Biomaterialia, 2021, 131, 236-247.	4.1	14
6	Magnetic biomaterials and nano-instructive tools as mediators of tendon mechanotransduction. Nanoscale Advances, 2020, 2, 140-148.	2.2	25
7	Bioinspired materials and tissue engineering approaches applied to the regeneration of musculoskeletal tissues. , 2020, , 73-105.		1
8	Pulsed Electromagnetic Field Modulates Tendon Cells Response in ILâ€1βâ€Conditioned Environment. Journal of Orthopaedic Research, 2020, 38, 160-172.	1.2	13
9	Magnetic responsive materials modulate the inflammatory profile of IL-1β conditioned tendon cells. Acta Biomaterialia, 2020, 117, 235-245.	4.1	24
10	Multiscale Multifactorial Approaches for Engineering Tendon Substitutes. , 2020, , 1-24.		0
11	Magnetic Stimulation Drives Macrophage Polarization in Cell to–Cell Communication with IL-1β Primed Tendon Cells. International Journal of Molecular Sciences, 2020, 21, 5441.	1.8	20
12	Remote triggering of TGF-β/Smad2/3 signaling in human adipose stem cells laden on magnetic scaffolds synergistically promotes tenogenic commitment. Acta Biomaterialia, 2020, 113, 488-500.	4.1	12
13	Evaluation of tenogenic differentiation potential of selected subpopulations of human adiposeâ€derived stem cells. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 2204-2217.	1.3	10
14	Magneto-mechanical actuation of magnetic responsive fibrous scaffolds boosts tenogenesis of human adipose stem cells. Nanoscale, 2019, 11, 18255-18271.	2.8	68
15	Tropoelastin-Coated Tendon Biomimetic Scaffolds Promote Stem Cell Tenogenic Commitment and Deposition of Elastin-Rich Matrix. ACS Applied Materials & Interfaces, 2019, 11, 19830-19840.	4.0	42
16	Triggering the activation of Activin A type II receptor in human adipose stem cells towards tenogenic commitment using mechanomagnetic stimulation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1149-1159.	1.7	34
17	Human adipose tissueâ€derived tenomodulin positive subpopulation of stem cells: A promising source of tendon progenitor cells. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 762-774.	1.3	35
18	Magnetic responsive cell-based strategies for diagnostics and therapeutics. Biomedical Materials (Bristol), 2018, 13, 054001.	1.7	24

ANA I GONçALVES

#	Article	IF	CITATIONS
19	Biâ€directional modulation of cellular interactions in an in vitro coâ€culture model of tendonâ€toâ€bone interface. Cell Proliferation, 2018, 51, e12493.	2.4	17
20	Strontium-Doped Bioactive Glass Nanoparticles in Osteogenic Commitment. ACS Applied Materials & Interfaces, 2018, 10, 23311-23320.	4.0	55
21	Bioreactors for Tendon Tissue Engineering. , 2018, , 269-300.		4
22	Injectable Hyaluronic Acid Hydrogels Enriched with Platelet Lysate as a Cryostable Off-the-Shelf System for Cell-Based Therapies. Regenerative Engineering and Translational Medicine, 2017, 3, 53-69.	1.6	15
23	Tissue-engineered magnetic cell sheet patches for advanced strategies in tendon regeneration. Acta Biomaterialia, 2017, 63, 110-122.	4.1	67
24	Bioengineered Strategies for Tendon Regeneration. , 2016, , 275-293.		1
25	Exploring the Potential of Starch/Polycaprolactone Aligned Magnetic Responsive Scaffolds for Tendon Regeneration. Advanced Healthcare Materials, 2016, 5, 213-222.	3.9	50
26	<i>In vitro</i> and <i>in vivo</i> assessment of magnetically actuated biomaterials and prospects in tendon healing. Nanomedicine, 2016, 11, 1107-1122.	1.7	20
27	CHAPTER 18. Magnetic-Responsive Materials for Tissue Engineering and Regenerative Medicine. RSC Smart Materials, 2016, , 491-519.	0.1	3
28	Fabrication of Hierarchical and Biomimetic Fibrous Structures to Support the Regeneration of Tendon Tissues. , 2015, , 259-280.		5
29	The effect of magnetic stimulation on the osteogenic and chondrogenic differentiation of human stem cells derived from the adipose tissue (hASCs). Journal of Magnetism and Magnetic Materials, 2015, 393, 526-536.	1.0	23
30	Tendon Stem Cell Niche. Pancreatic Islet Biology, 2015, , 221-244.	0.1	7
31	Cell-Based Approaches for Tendon Regeneration. , 2015, , 187-203.		9
32	Understanding the Role of Growth Factors in Modulating Stem Cell Tenogenesis. PLoS ONE, 2013, 8, e83734.	1.1	90
33	In vitro and in vivo assessment of magnetically actuated biomaterials for tendon regeneration. Frontiers in Bioengineering and Biotechnology, 0, 4, .	2.0	0