
Vasco Branco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2617825/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microplastics cause neurotoxicity, oxidative damage and energy-related changes and interact with the bioaccumulation of mercury in the European seabass, Dicentrarchus labrax (Linnaeus, 1758). Aquatic Toxicology, 2018, 195, 49-57.	4.0	471
2	Redox Signaling Mediated by Thioredoxin and Glutathione Systems in the Central Nervous System. Antioxidants and Redox Signaling, 2017, 27, 989-1010.	5.4	233
3	Microplastics increase mercury bioconcentration in gills and bioaccumulation in the liver, and cause oxidative stress and damage in Dicentrarchus labrax juveniles. Scientific Reports, 2018, 8, 15655.	3.3	164
4	Effects of microplastics and mercury in the freshwater bivalve Corbicula fluminea (Müller, 1774): Filtration rate, biochemical biomarkers and mercury bioconcentration. Ecotoxicology and Environmental Safety, 2018, 164, 155-163.	6.0	151
5	Mercury and selenium interaction in vivo: Effects on thioredoxin reductase and glutathione peroxidase. Free Radical Biology and Medicine, 2012, 52, 781-793.	2.9	147
6	Biomarkers of mercury toxicity: Past, present, and future trends. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2017, 20, 119-154.	6.5	147
7	Mercury and selenium in blue shark (Prionace glauca, L. 1758) and swordfish (Xiphias gladius, L. 1758) from two areas of the Atlantic Ocean. Environmental Pollution, 2007, 150, 373-380.	7.5	145
8	Mitochondrial thioredoxin reductase inhibition, selenium status, and Nrf-2 activation are determinant factors modulating the toxicity of mercury compounds. Free Radical Biology and Medicine, 2014, 73, 95-105.	2.9	85
9	Inhibition of the thioredoxin system in the brain and liver of zebra-seabreams exposed to waterborne methylmercury. Toxicology and Applied Pharmacology, 2011, 251, 95-103.	2.8	81
10	Tracing anthropogenic Hg and Pb input using stable Hg and Pb isotope ratios in sediments of the central Portuguese Margin. Chemical Geology, 2013, 336, 62-71.	3.3	77
11	Impaired cross-talk between the thioredoxin and glutathione systems is related to ASK-1 mediated apoptosis in neuronal cells exposed to mercury. Redox Biology, 2017, 13, 278-287.	9.0	72
12	Seasonal variation of monomethylmercury concentrations in surface sediments of the Tagus Estuary (Portugal). Environmental Pollution, 2007, 148, 380-383.	7.5	59
13	Glutaredoxin: Discovery, redox defense and much more. Redox Biology, 2021, 43, 101975.	9.0	59
14	Total and organic mercury concentrations in muscle tissue of the blue shark (Prionace glauca L.1758) from the Northeast Atlantic. Marine Pollution Bulletin, 2004, 49, 871-874.	5.0	51
15	Mercury in sediments and vegetation in a moderately contaminated salt marsh (Tagus Estuary,) Tj ETQq1 1 0.784	1314 rgBT	/Qverlock 1
16	The thioredoxin system as a target for mercury compounds. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 129255.	2.4	39
17	Relations between mercury, methyl-mercury and selenium in tissues of Octopus vulgaris from the Portuguese Coast. Environmental Pollution, 2010, 158, 2094-2100.	7.5	36
18	Distribution of Mercury and Monomethylmercury in Sediments of Vigo Ria, NW Iberian Peninsula. Water, Air, and Soil Pollution, 2007, 182, 21-29.	2.4	31

VASCO BRANCO

#	Article	IF	CITATIONS
19	Toxicological effects of thiomersal and ethylmercury: Inhibition of the thioredoxin system and NADP+-dependent dehydrogenases of the pentose phosphate pathway. Toxicology and Applied Pharmacology, 2015, 286, 216-223.	2.8	30
20	Diphenyl diselenide protects against methylmercuryâ€induced inhibition of thioredoxin reductase and glutathione peroxidase in human neuroblastoma cells: a comparison with ebselen. Journal of Applied Toxicology, 2017, 37, 1073-1081.	2.8	29
21	Thioredoxin, Glutathione and Related Molecules in Tumors of the Nervous System. Current Medicinal Chemistry, 2020, 27, 1878-1900.	2.4	29
22	Biomarkers of Adverse Response to Mercury: Histopathology versus Thioredoxin Reductase Activity. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-9.	3.0	26
23	Assessment of Total and Organic Mercury Levels in Blue Sharks (Prionace glauca) from the South and Southeastern Brazilian Coast. Biological Trace Element Research, 2014, 159, 128-134.	3.5	26
24	Mercury enrichments in core sediments in Hugli–Matla–Bidyadhari estuarine complex, north-eastern part of the Bay of Bengal and their ecotoxicological significance. Environmental Geology, 2009, 57, 1125.	1.2	22
25	Origin and transport of trace metals deposited in the canyons off Lisboa and adjacent slopes (Portuguese Margin) in the last century. Marine Geology, 2011, 282, 169-177.	2.1	22
26	Using Factor Analysis to Characterise Historical Trends of Trace Metal Contamination in a Sediment Core from the Tagus Prodelta, Portugal. Water, Air, and Soil Pollution, 2009, 197, 277-287.	2.4	21
27	Sedimentary record of anthropogenic metal inputs in the Tagus prodelta (Portugal). Continental Shelf Research, 2009, 29, 381-392.	1.8	21
28	Biogeochemistry of mercury and methylmercury in sediment cores from Sundarban mangrove wetland, India—a UNESCO World Heritage Site. Environmental Monitoring and Assessment, 2012, 184, 5239-5254.	2.7	19
29	Neurotoxicity of mercury: An old issue with contemporary significance. Advances in Neurotoxicology, 2021, 5, 239-262.	1.9	16
30	Synthesis of glutathione as a central aspect of PAH toxicity in liver cells: A comparison between phenanthrene, Benzo[b]Fluoranthene and their mixtures. Ecotoxicology and Environmental Safety, 2021, 208, 111637.	6.0	14
31	Environmental levels of Linear alkylbenzene Sulfonates (LAS) in sediments from the Tagus estuary (Portugal): environmental implications. Environmental Monitoring and Assessment, 2009, 149, 151-161.	2.7	13
32	ls Arenicola marina a suitable test organism to evaluate the bioaccumulation potential of Hg, PAHs and PCBs from dredged sediments?. Chemosphere, 2008, 70, 1756-1765.	8.2	11
33	Risk assessment of methylmercury in pregnant women and newborns in the island of Madeira (Portugal) using exposure biomarkers and food-frequency questionnaires. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2019, 82, 833-844.	2.3	9
34	Marine Fish Primary Hepatocyte Isolation and Culture: New Insights to Enzymatic Dissociation Pancreatin Digestion. International Journal of Environmental Research and Public Health, 2021, 18, 1380.	2.6	7
35	Mitochondrial thioredoxin system as a primary target for mercury compounds. Toxicology Letters, 2014, 229, S57-S58.	0.8	5
36	Thioredoxin Reductase Inhibitors as Potential Antitumors: Mercury Compounds Efficacy in Glioma Cells. Frontiers in Molecular Biosciences, 0, 9, .	3.5	5

VASCO BRANCO

#	Article	IF	CITATIONS
37	A pilot study to evaluate the serum Alpha-1 acid glycoprotein response in cats suffering from feline chronic gingivostomatitis. BMC Veterinary Research, 2020, 16, 390.	1.9	4
38	In Vitro Assessment of the Efficacy of a Macrocyclic Chelator in Reversing Methylmercury Toxicity. International Journal of Environmental Research and Public Health, 2019, 16, 4817.	2.6	2
39	Temporal clustering of metals in a short sediment core of the Cascais Canyon (Portuguese Margin). Scientia Marina, 2010, 74, 89-98.	0.6	Ο