James D Neill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2617642/publications.pdf Version: 2024-02-01

IAMES D NEUL

#	Article	IF	CITATIONS
1	Supernova siblings and their parent galaxies in the Zwicky Transient Facility Bright Transient Survey. Monthly Notices of the Royal Astronomical Society, 2022, 511, 241-254.	4.4	6
2	New Modules for the SEDMachine to Remove Contaminations from Cosmic Rays and Non-target Light: byecr and contsep. Publications of the Astronomical Society of the Pacific, 2022, 134, 024505.	3.1	14
3	Resolving the H i in damped Lyman \hat{I}_{\pm} systems that power star formation. Nature, 2022, 606, 59-63.	27.8	9
4	Bright, Months-long Stellar Outbursts Announce the Explosion of Interaction-powered Supernovae. Astrophysical Journal, 2021, 907, 99.	4.5	59
5	HO Puppis: Not a Be Star, but a Newly Confirmed IW And-type Star. Astrophysical Journal, 2021, 911, 51.	4.5	3
6	The luminous and rapidly evolving SN 2018bcc. Astronomy and Astrophysics, 2021, 649, A163.	5.1	14
7	Three Lyman- <i>α</i> -emitting filaments converging to a massive galaxy group at <i>z</i> = 2.91: discussing the case for cold gas infall. Astronomy and Astrophysics, 2021, 649, A78.	5.1	41
8	SNIascore: Deep-learning Classification of Low-resolution Supernova Spectra. Astrophysical Journal Letters, 2021, 917, L2.	8.3	11
9	The Palomar Transient Factory Core-collapse Supernova Host-galaxy Sample. I. Host-galaxy Distribution Functions and Environment Dependence of Core-collapse Supernovae. Astrophysical Journal, Supplement Series, 2021, 255, 29.	7.7	56
10	An Ancient Massive Quiescent Galaxy Found in a Gas-rich z â^1⁄4 3 Group. Astrophysical Journal Letters, 2021, 917, L17.	8.3	18
11	Real-time discovery of AT2020xnd: a fast, luminous ultraviolet transient with minimal radioactive ejecta. Monthly Notices of the Royal Astronomical Society, 2021, 508, 5138-5147.	4.4	44
12	A blue ring nebula from a stellar merger several thousand years ago. Nature, 2020, 587, 387-391.	27.8	9
13	The Zwicky Transient Facility Bright Transient Survey. I. Spectroscopic Classification and the Redshift Completeness of Local Galaxy Catalogs. Astrophysical Journal, 2020, 895, 32.	4.5	91
14	Cataclysmic Variables in the First Year of the Zwicky Transient Facility. Astronomical Journal, 2020, 159, 198.	4.7	22
15	Cosmicflows-4: The Calibration of Optical and Infrared Tully–Fisher Relations. Astrophysical Journal, 2020, 896, 3.	4.5	59
16	Characterization of the Nucleus, Morphology, and Activity of Interstellar Comet 2I/Borisov by Optical and Near-infrared GROWTH, Apache Point, IRTF, ZTF, and Keck Observations. Astronomical Journal, 2020, 160, 26.	4.7	28
17	Emission-line Data Cubes of the HH 32 Stellar Jet. Astronomical Journal, 2020, 160, 165.	4.7	2
18	The Broad-lined Ic Supernova ZTF18aaqjovh (SN 2018bvw): An Optically Discovered Engine-driven Supernova Candidate with Luminous Radio Emission. Astrophysical Journal, 2020, 893, 132.	4.5	11

#	Article	IF	CITATIONS
19	The FLASHES Survey. I. Integral Field Spectroscopy of the CGM around 48 zÂ≃Â2.3–3.1 QSOs. Astrophysica Journal, 2020, 894, 3.	 4.5	34
20	Early Ultraviolet Observations of Type IIn Supernovae Constrain the Asphericity of Their Circumstellar Material. Astrophysical Journal, 2020, 899, 51.	4.5	9
21	SN 2020bvc: A Broad-line Type Ic Supernova with a Double-peaked Optical Light Curve and a Luminous X-Ray and Radio Counterpart. Astrophysical Journal, 2020, 902, 86.	4.5	25
22	SN 2018fif: The Explosion of a Large Red Supergiant Discovered in Its Infancy by the Zwicky Transient Facility. Astrophysical Journal, 2020, 902, 6.	4.5	18
23	The Zwicky Transient Facility Census of the Local Universe. I. Systematic Search for Calcium-rich Gap Transients Reveals Three Related Spectroscopic Subclasses. Astrophysical Journal, 2020, 905, 58.	4.5	57
24	Cosmicflows-4: The Catalog of â^¼10,000 Tully–Fisher Distances. Astrophysical Journal, 2020, 902, 145.	4.5	43
25	A Non-equipartition Shock Wave Traveling in a Dense Circumstellar Environment around SN 2020oi. Astrophysical Journal, 2020, 903, 132.	4.5	19
26	The Zwicky Transient Facility Bright Transient Survey. II. A Public Statistical Sample for Exploring Supernova Demographics*. Astrophysical Journal, 2020, 904, 35.	4.5	107
27	ZTF20aajnksq (AT 2020blt): A Fast Optical Transient at zÂâ‰^Â2.9 with No Detected Gamma-Ray Burst Counterpart. Astrophysical Journal, 2020, 905, 98.	4.5	24
28	Helium-rich Superluminous Supernovae from the Zwicky Transient Facility. Astrophysical Journal Letters, 2020, 902, L8.	8.3	18
29	ZTF18aalrxas: A Type IIb Supernova from a Very Extended Low-mass Progenitor. Astrophysical Journal Letters, 2019, 878, L5.	8.3	24
30	Multi-filament gas inflows fuelling young star-forming galaxies. Nature Astronomy, 2019, 3, 822-831.	10.1	34
31	Discovery of an Intermediate-luminosity Red Transient in M51 and Its Likely Dust-obscured, Infrared-variable Progenitor. Astrophysical Journal Letters, 2019, 880, L20.	8.3	19
32	A New Class of Changing-look LINERs. Astrophysical Journal, 2019, 883, 31.	4.5	66
33	Discovery of a Lyα-emitting Dark Cloud within the zÂâ^¼Â2.8 SMM J02399-0136 System. Astrophysical Journal, 2019, 875, 130.	4.5	11
34	The fast, luminous ultraviolet transient AT2018cow: extreme supernova, or disruption of a star by an intermediate-mass black hole?. Monthly Notices of the Royal Astronomical Society, 2019, 484, 1031-1049.	4.4	136
35	The First Tidal Disruption Flare in ZTF: From Photometric Selection to Multi-wavelength Characterization. Astrophysical Journal, 2019, 872, 198.	4.5	74
36	Supernova PTF 12glz: A Possible Shock Breakout Driven through an Aspherical Wind. Astrophysical Journal, 2019, 872, 141.	4.5	20

#	Article	IF	CITATIONS
37	2900 Square Degree Search for the Optical Counterpart of Short Gamma-Ray Burst GRB 180523B with the Zwicky Transient Facility. Publications of the Astronomical Society of the Pacific, 2019, 131, 048001.	3.1	27
38	Fully automated integral field spectrograph pipeline for the SEDMachine: pysedm. Astronomy and Astrophysics, 2019, 627, A115.	5.1	89
39	The Dark Matter Distributions in Low-mass Disk Galaxies. II. The Inner Density Profiles. Astrophysical Journal, 2019, 887, 94.	4.5	19
40	GROWTH on S190425z: Searching Thousands of Square Degrees to Identify an Optical or Infrared Counterpart to a Binary Neutron Star Merger with the Zwicky Transient Facility and Palomar Gattini-IR. Astrophysical Journal Letters, 2019, 885, L19.	8.3	86
41	ZTF Early Observations of Type Ia Supernovae. I. Properties of the 2018 Sample. Astrophysical Journal, 2019, 886, 152.	4.5	77
42	iPTF Survey for Cool Transients. Publications of the Astronomical Society of the Pacific, 2018, 130, 034202.	3.1	12
43	The SED Machine: A Robotic Spectrograph for Fast Transient Classification. Publications of the Astronomical Society of the Pacific, 2018, 130, 035003.	3.1	132
44	A Hubble Space Telescope survey for novae in M87 – III. Are novae good standard candles 15 d after maximum brightness?. Monthly Notices of the Royal Astronomical Society, 2018, 474, 1746-1751.	4.4	5
45	Andromeda's Parachute: A Bright Quadruply Lensed Quasar at zÂ=Â2.377. Astrophysical Journal, 2018, 859, 146.	4.5	32
46	iPTF 16hgs: A Double-peaked Ca-rich Gap Transient in a Metal-poor, Star-forming Dwarf Galaxy. Astrophysical Journal, 2018, 866, 72.	4.5	31
47	The Keck Cosmic Web Imager Integral Field Spectrograph. Astrophysical Journal, 2018, 864, 93.	4.5	126
48	Direct evidence of AGN feedback: a post-starburst galaxy stripped of its gas by AGN-driven winds. Monthly Notices of the Royal Astronomical Society, 2018, 480, 3993-4016.	4.4	43
49	Keck/Palomar Cosmic Web Imagers Reveal an Enormous Lyα Nebula in an Extremely Overdense Quasi-stellar Object Pair Field at zÂ=Â2.45. Astrophysical Journal Letters, 2018, 861, L3.	8.3	41
50	iPTF Discovery of the Rapid "Turn-on―of a Luminous Quasar. Astrophysical Journal, 2017, 835, 144.	4.5	97
51	iPTF16geu: A multiply imaged, gravitationally lensed type Ia supernova. Science, 2017, 356, 291-295.	12.6	168
52	iPTF16fnl: A Faint and Fast Tidal Disruption Event in an E+A Galaxy. Astrophysical Journal, 2017, 844, 46.	4.5	111
53	A Hubble Space Telescope Survey for Novae in M87. II. Snuffing out the Maximum Magnitude–Rate of Decline Relation for Novae as a Non-standard Candle, and a Prediction of the Existence of Ultrafast Novae [*] . Astrophysical Journal, 2017, 839, 109.	4.5	27
54	THE GALEX TIME DOMAIN SURVEY. II. WAVELENGTH-DEPENDENT VARIABILITY OF ACTIVE GALACTIC NUCLEI IN THE PAN-STARRS1 MEDIUM DEEP SURVEY. Astrophysical Journal, 2016, 833, 226.	4.5	12

#	Article	IF	CITATIONS
55	A NEWLY FORMING COLD FLOW PROTOGALACTIC DISK, A SIGNATURE OF COLD ACCRETION FROM THE COSMIC WEB. Astrophysical Journal Letters, 2016, 824, L5.	8.3	35
56	ON THE CLASSIFICATION OF UGC 1382 AS A GIANT LOW SURFACE BRIGHTNESS GALAXY. Astrophysical Journal, 2016, 826, 210.	4.5	29
57	A HUBBLE SPACE TELESCOPE SURVEY FOR NOVAE IN M87. I. LIGHT AND COLOR CURVES, SPATIAL DISTRIBUTIONS, AND THE NOVA RATE*. Astrophysical Journal, Supplement Series, 2016, 227, 1.	7.7	25
58	THE INFLUENCE OF GALAXY SURFACE BRIGHTNESS ON THE MASS–METALLICITY RELATION. Astrophysical Journal, 2015, 810, 151.	4.5	5
59	EXPLORING THE ROLE OF GLOBULAR CLUSTER SPECIFIC FREQUENCY ON THE NOVA RATES IN THREE VIRGO ELLIPTICAL GALAXIES. Astrophysical Journal, 2015, 811, 34.	4.5	17
60	DEEP <i>GALEX</i> UV SURVEY OF THE <i>KEPLER</i> FIELD. I. POINT SOURCE CATALOG. Astrophysical Journal, 2015, 813, 100.	4.5	35
61	A giant protogalactic disk linked to the cosmic web. Nature, 2015, 524, 192-195.	27.8	70
62	From Spitzer Galaxy photometry to Tully–Fisher distances. Monthly Notices of the Royal Astronomical Society, 2014, 444, 527-541.	4.4	115
63	Nova multiwavelength light curves: predicting UV precursor flashes and pre-maximum halts. Monthly Notices of the Royal Astronomical Society, 2014, 437, 1962-1975.	4.4	40
64	GIANT SPARKS AT COSMOLOGICAL DISTANCES?. Astrophysical Journal, 2014, 797, 70.	4.5	176
65	THE CALIBRATION OF THE <i>WISE</i> W1 AND W2 TULLY-FISHER RELATION. Astrophysical Journal, 2014, 792, 129.	4.5	31
66	PROBING THE INTERGALACTIC MEDIUM WITH FAST RADIO BURSTS. Astrophysical Journal, 2014, 797, 71.	4.5	98
67	THE <i>GALEX</i> TIME DOMAIN SURVEY. I. SELECTION AND CLASSIFICATION OF OVER A THOUSAND ULTRAVIOLET VARIABLE SOURCES. Astrophysical Journal, 2013, 766, 60.	4.5	48
68	An ultraviolet–optical flare from the tidal disruption of a helium-rich stellar core. Nature, 2012, 485, 217-220.	27.8	373
69	The Keck Cosmic Web Imager: a capable new integral field spectrograph for the W. M. Keck Observatory. Proceedings of SPIE, 2012, , .	0.8	33
70	CLASSICAL NOVAE IN ANDROMEDA: LIGHT CURVES FROM THE PALOMAR TRANSIENT FACTORY AND <i>GALEX</i> . Astrophysical Journal, 2012, 752, 133.	4.5	46
71	SUPERNOVA PTF 09UJ: A POSSIBLE SHOCK BREAKOUT FROM A DENSE CIRCUMSTELLAR WIND. Astrophysical Journal, 2010, 724, 1396-1401.	4.5	152
72	A turbulent wake as a tracer of 30,000 years of Mira's mass loss history. Nature, 2007, 448, 780-783.	27.8	109

#	Article	IF	CITATIONS
73	Toward a Cosmological Hubble Diagram for Type Ilâ€₽ Supernovae. Astrophysical Journal, 2006, 645, 841-850.	4.5	126
74	The Supernova Legacy Survey: measurement of \$Omega_{mathsf{M}}\$, \$Omega_mathsf{Lambda}\$ andwfrom the first year data set. Astronomy and Astrophysics, 2006, 447, 31-48.	5.1	2,091
75	The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star. Nature, 2006, 443, 308-311.	27.8	433
76	Rates and Properties of Type la Supernovae as a Function of Mass and Star Formation in Their Host Galaxies. Astrophysical Journal, 2006, 648, 868-883.	4.5	430
77	Tramp Novae between Galaxies in the Fornax Cluster: Tracers of Intracluster Light. Astrophysical Journal, 2005, 618, 692-704.	4.5	30
78	Gemini Spectroscopy of Supernovae from the Supernova Legacy Survey: Improving Highâ€Redshift Supernova Selection and Classification. Astrophysical Journal, 2005, 634, 1190-1201.	4.5	160
79	The H Light Curves and Spatial Distribution of Novae in M81. Astronomical Journal, 2004, 127, 816-831.	4.7	24
80	The H-alpha light curves of novae in M31. Astrophysical Journal, 1990, 356, 472.	4.5	37
81	Planetary nebulae as standard candles. II - The calibration in M31 and its companions. Astrophysical Journal, 1989, 339, 53.	4.5	253
82	The spatial distribution and population of novae in M31. Astrophysical Journal, 1987, 318, 520.	4.5	91