Virginia Ruiz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2617622/publications.pdf

Version: 2024-02-01

186209 168321 3,073 73 28 53 h-index citations g-index papers 73 73 73 4381 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Inkjet Printed Disposable Highâ€Rate Onâ€Paper Microsupercapacitors. Advanced Functional Materials, 2022, 32, 2108773.	7.8	36
2	Reactive oxygen species (ROS)-responsive biocompatible polyethylene glycol nanocomposite hydrogels with different graphene derivatives. Journal of Materials Science, 2021, 56, 10041-10052.	1.7	6
3	Graphene quantum dot-based hydrogels for photocatalytic degradation of organic dyes. Applied Surface Science, 2020, 527, 146937.	3.1	23
4	On the Factors behind the Photocatalytic Activity of Graphene Quantum Dots for Organic Dye Degradation. Particle and Particle Systems Characterization, 2020, 37, 2000061.	1.2	17
5	PEGylated carbon black as lubricant nanoadditive with enhanced dispersion stability and tribological performance. Tribology International, 2019, 137, 228-235.	3.0	19
6	Enhanced photostability and sensing performance of graphene quantum dots encapsulated in electrospun polyacrylonitrile nanofibrous filtering membranes. Sensors and Actuators B: Chemical, 2018, 262, 902-912.	4.0	29
7	In-situ Evidence of the Redox-State Dependence of Photoluminescence in Graphene Quantum Dots. Journal of Physical Chemistry Letters, 2017, 8, 531-537.	2.1	19
8	Tuning the antioxidant activity of graphene quantum dots: Protective nanomaterials against dye decoloration. Carbon, 2017, 116, 366-374.	5.4	100
9	Temperature dependent performance and catalyst layer properties of PtRu supported on modified few-walled carbon nanotubes for the alkaline direct ethanol fuel cell. Journal of Electroanalytical Chemistry, 2017, 793, 48-57.	1.9	19
10	Optically transparent electrodes for spectroelectrochemistry fabricated with graphene nanoplatelets and single-walled carbon nanotubes. RSC Advances, 2016, 6, 31431-31439.	1.7	12
11	Graphene quantum dot membranes as fluorescent sensing platforms for Cr (VI) detection. Carbon, 2016, 109, 658-665.	5.4	87
12	Synergistic reinforcement of poly(vinyl alcohol) nanocomposites with cellulose nanocrystal-stabilized graphene. Composites Science and Technology, 2015, 117, 26-31.	3.8	68
13	Graphene quantum dots as a novel sensing material for low-cost resistive and fast-response humidity sensors. Sensors and Actuators B: Chemical, 2015, 218, 73-77.	4.0	59
14	Activity and stability studies of platinized multi-walled carbon nanotubes as fuel cell electrocatalysts. Applied Catalysis B: Environmental, 2015, 162, 289-299.	10.8	35
15	Graphitized carbon nanofiber–Pt nanoparticle hybrids as sensitive tool for preparation of screen printing biosensors. Detection of lactate in wines and ciders. Bioelectrochemistry, 2015, 101, 58-65.	2.4	58
16	Enhanced performance of a silicon microfabricated direct methanol fuel cell with PtRu catalysts supported on few-walled carbon nanotubes. Energy, 2014, 65, 612-620.	4. 5	36
17	Influence of different carbon nanostructures on the electrocatalytic activity and stability of Pt supported electrocatalysts. International Journal of Hydrogen Energy, 2014, 39, 8215-8224.	3 . 8	16
18	Interaction of multi-walled carbon nanotubes with perfluorinated sulfonic acid ionomers and surface treatment studies. Carbon, 2014, 71, 218-228.	5.4	31

#	Article	IF	Citations
19	Flexible Viologen Electrochromic Devices with Low Operational Voltages Using Reduced Graphene Oxide Electrodes. ACS Applied Materials & Samp; Interfaces, 2014, 6, 14562-14567.	4.0	100
20	Spectroelectrochemical synthesis of gold nanoparticles using cyclic voltammetry in the presence of a protective agent. RSC Advances, 2014, 4, 45168-45173.	1.7	5
21	Adsorption Behavior of Perfluorinated Sulfonic Acid Ionomer on Highly Graphitized Carbon Nanofibers and Their Thermal Stabilities. Journal of Physical Chemistry C, 2014, 118, 10814-10823.	1.5	39
22	Nitrogen-doped graphene with enhanced oxygen reduction activity produced by pyrolysis of graphene functionalized with imidazole derivatives. International Journal of Hydrogen Energy, 2014, 39, 12749-12756.	3.8	24
23	Spectroelectrochemical study of the electrosynthesis of Pt		

#	Article	IF	Citations
37	Ultrafast and High-Contrast Electrochromism on Bendable Transparent Carbon Nanotube Electrodes. Journal of Physical Chemistry Letters, 2010, 1, 1367-1371.	2.1	26
38	Single-Walled Carbon Nanotube Thin-Film Counter Electrodes for Indium Tin Oxide-Free Plastic Dye Solar Cells. Journal of the Electrochemical Society, 2010, 157, B1831.	1.3	50
39	Layer-by-layer electrosynthesis of Pt–Polyaniline nanocomposites for the catalytic oxidation of methanol. Electrochemistry Communications, 2009, 11, 122-125.	2.3	42
40	Electrochemical purification of carbon nanotube electrodes. Electrochemistry Communications, 2009, 11, 1535-1538.	2.3	29
41	Spectroelectrochemistry at the liquid liquid interface: Parallel beam UV–vis absorption. Electrochimica Acta, 2009, 54, 5071-5076.	2.6	16
42	Flexible optically transparent single-walled carbon nanotube electrodes for UV–Vis absorption spectroelectrochemistry. Electrochemistry Communications, 2009, 11, 442-445.	2.3	27
43	A spectroelectrochemical approach to the electrodeposition of bismuth film electrodes and their use in stripping analysis. Analytica Chimica Acta, 2008, 608, 140-146.	2.6	16
44	Electrochemical, spectroscopic and electrogravimetric detection of oligomers occluded in electrochemically synthesized poly(3,4-ethylenedioxythiophene) films. Electrochimica Acta, 2008, 53, 4219-4227.	2.6	15
45	Synthesis and Stability of Monolayer-Protected Au38 Clusters. Journal of the American Chemical Society, 2008, 130, 11049-11055.	6.6	168
46	Quantised charging of monolayer-protected nanoparticles. Chemical Society Reviews, 2008, 37, 1836.	18.7	108
47	Ion Limited Charging of Nanoparticle Thin Films. Journal of Physical Chemistry C, 2008, 112, 15637-15642.	1.5	15
48	Electrochemical Gating in Scanning Electrochemical Microscopy. Journal of Physical Chemistry C, 2008, 112, 2724-2728.	1.5	13
49	Nanoparticle Film Charginglon Rectified or Ion Limited?. Journal of the American Chemical Society, 2007, 129, 7732-7733.	6.6	24
50	Potential Regulation of the Spectroelectrochemical Response of Monolayer-Protected Gold Cluster Films by Electrolyte Composition. Journal of Physical Chemistry C, 2007, 111, 4277-4284.	1.5	9
51	Quantized spectroelectrochemical behaviour of monolayer-protected gold cluster films assessed by reflectance spectroelectrochemical quartz crystal microbalance. Electrochemistry Communications, 2007, 9, 255-261.	2.3	10
52	Electropolymerization of aniline on polyaniline-modified electrodes under hydrodynamic conditions. Electrochimica Acta, 2007, 52, 4778-4783.	2.6	12
53	Electrochemical and Photophysical Properties of Ruthenium(II) Bipyridyl Complexes with Pendant Alkanethiol Chains in Solution and Anchored to Metal Surfaces. Open Inorganic Chemistry Journal, 2007, 1, 26-36.	0.3	11
54	Effect of composition on the conductivity and morphology of poly(3-hexylthiophene)/gold nanoparticle composite Langmuir–Schaeffer films. Physical Chemistry Chemical Physics, 2006, 8, 5096-5105.	1.3	34

#	Article	IF	Citations
55	UV/Vis Spectroelectrochemical Evidence of Rectification of Quantized Charging in Monolayer-Protected Gold Cluster Films. Small, 2006, 2, 56-58.	5.2	10
56	Study of polyaniline films degradation by thin-layer bidimensional spectroelectrochemistry. Electrochimica Acta, 2006, 52, 234-239.	2.6	37
57	Electropolymerization and characterization of polyaniline films using a spectroelectrochemical flow cell. Analytica Chimica Acta, 2006, 573-574, 20-25.	2.6	19
58	Nernstian performance of the optical response of monolayer-protected gold cluster films. Electrochemistry Communications, 2006, 8, 863-868.	2.3	12
59	Study of electrochemical stability of conducting polymers by bidimensional spectroelectrochemistry: p- and n-doping of poly(4,4′-bis(butylthio)-2,2′-bithiophene) films. Polymer Degradation and Stability, 2006, 91, 3117-3123.	2.7	6
60	A new reflection–transmission bidimensional spectroelectrochemistry cell: Electrically controlled release of chemicals from a conducting polymer. Journal of Electroanalytical Chemistry, 2006, 596, 95-100.	1.9	12
61	Enhanced visible photoluminescence in ultrathin poly(3-hexylthiophene) films by incorporation of Au nanoparticles. Chemical Communications, 2005, , 1052.	2.2	27
62	Molecular Ordering and 2D Conductivity in Ultrathin Poly(3-hexylthiophene)/Gold Nanoparticle Composite Films. Journal of Physical Chemistry B, 2005, 109, 19335-19344.	1.2	42
63	Bidimensional spectroelectrochemical study on electrogeneration of soluble Prussian Blue from hexacyanoferrate(II) solutions. Electrochimica Acta, 2004, 49, 1027-1033.	2.6	29
64	Electropolymerization under potentiodynamic and potentiostatic conditions. Electrochimica Acta, 2004, 50, 59-67.	2.6	4
65	Electron Transport in Two-Dimensional Arrays of Gold Nanocrystals Investigated by Scanning Electrochemical Microscopy. Journal of the American Chemical Society, 2004, 126, 7126-7132.	6.6	64
66	UV-Visible Spectroelectrochemical Detection of Side-Reactions in the Hexacyanoferrate(III)/(II) Electrode Process. Electroanalysis, 2003, 15, 702-708.	1.5	25
67	Digital simulation model for bidimensional spectroelectrochemistry. Journal of Electroanalytical Chemistry, 2003, 553, 87-95.	1.9	7
68	Electrochemical Resolution of 15 Oxidation States for Monolayer Protected Gold Nanoparticles. Journal of the American Chemical Society, 2003, 125, 6644-6645.	6.6	331
69	Probing Conductivity of Polyelectrolyte/Nanoparticle Composite Films by Scanning Electrochemical Microscopy. Nano Letters, 2003, 3, 1459-1462.	4.5	39
70	Charge injection and lateral conductivity in monolayers of metallic nanoparticles. Chemical Communications, 2003, , 1570.	2.2	24
71	Bidimensional chronoabsorptometric study of electropolymerisation of 4,4′-bis(2-methylbutylthio)-2,2′-bithiophene. Electrochemistry Communications, 2002, 4, 451-456.	2.3	23
72	Bidimensional Spectroelectrochemistry. Analytical Chemistry, 2001, 73, 2883-2889.	3.2	39

#	Article	IF	CITATIONS
73	Bidimensional Spectroelectrochemistry Applied to the Electrosynthesis and Characterization of Conducting Polymers: Study of Poly[4,4′-bis(butylthio)-2,2′-bithiophene]. Helvetica Chimica Acta, 2001, 84, 3628-3642.	1.0	26