
Shunsuke Sakurai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2617269/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Hydrogen-Free Approach for Activating an Fe Catalyst Using Trace Amounts of Noble Metals and Confinement into Nanoparticles. Journal of Physical Chemistry Letters, 2022, 13, 1879-1885.	4.6	2
2	Multi-step chemical vapor synthesis reactor based on a microplasma for structure-controlled synthesis of single-walled carbon nanotubes. Chemical Engineering Journal, 2022, 444, 136634.	12.7	2
3	A mini-microplasma-based synthesis reactor for growing highly crystalline carbon nanotubes. Carbon, 2021, 173, 448-453.	10.3	6
4	Role of Hydrogen in Catalyst Activation for Plasma-Based Synthesis of Carbon Nanotubes. ACS Omega, 2021, 6, 18763-18769.	3.5	5
5	Quantitative Evidence for the Dependence of Highly Crystalline Single Wall Carbon Nanotube Synthesis on the Growth Method. Nanomaterials, 2021, 11, 3461.	4.1	5
6	Additional obstacles in carbon nanotube growth by gas-flow directed chemical vapour deposition unveiled through improving growth density. Nanoscale Advances, 2019, 1, 4076-4081.	4.6	1
7	Millimetre-scale growth of single-wall carbon nanotube forests using an aluminium nitride catalyst underlayer. MRS Advances, 2019, 4, 177-183.	0.9	2
8	Modulation of carbon nanotube yield and type through the collective effects of initially deposited catalyst amount and MgO underlayer annealing temperature. MRS Advances, 2019, 4, 139-146.	0.9	0
9	Limitation in growth temperature for water-assisted single wall carbon nanotube forest synthesis. MRS Advances, 2018, 3, 91-96.	0.9	4
10	A New, General Strategy for Fabricating Highly Concentrated and Viscoplastic Suspensions Based on a Structural Approach To Modulate Interparticle Interaction. Journal of the American Chemical Society, 2018, 140, 1098-1104.	13.7	9
11	Synthesis of sub-millimeter tall SWNT forests on a catalyst underlayer of MgO single crystal. MRS Advances, 2017, 2, 1-8.	0.9	13
12	The double-edged effects of annealing MgO underlayers on the efficient synthesis of single-wall carbon nanotube forests. Nanoscale, 2017, 9, 17617-17622.	5.6	1
13	Unexpected Efficient Synthesis of Millimeter-Scale Single-Wall Carbon Nanotube Forests Using a Sputtered MgO Catalyst Underlayer Enabled by a Simple Treatment Process. Journal of the American Chemical Society, 2016, 138, 16608-16611.	13.7	18
14	Examining the structural contribution to the electrical character of single wall carbon nanotube forest by a height dependent study. Carbon, 2016, 108, 106-111.	10.3	0
15	Highly pure, millimeter-tall, sub-2-nanometer diameter single-walled carbon nanotube forests. Carbon, 2016, 107, 433-439.	10.3	24
16	A phenomenological model for selective growth of semiconducting single-walled carbon nanotubes based on catalyst deactivation. Nanoscale, 2016, 8, 1015-1023.	5.6	13
17	A sweet spot for highly efficient growth of vertically aligned single-walled carbon nanotube forests enabling their unique structures and properties. Nanoscale, 2016, 8, 162-171.	5.6	52
18	Sub-millimeter arbitrary arrangements of monolithically micro-scale electrical double layer capacitors. Journal of Physics: Conference Series, 2015, 660, 012086.	0.4	0

SHUNSUKE SAKURAI

#	Article	IF	CITATIONS
19	Lithographically Integrated Microsupercapacitors for Compact, High Performance, and Designable Energy Circuits. Advanced Energy Materials, 2015, 5, 1500741.	19.5	67
20	The Application of Gas Dwell Time Control for Rapid Single Wall Carbon Nanotube Forest Synthesis to Acetylene Feedstock. Nanomaterials, 2015, 5, 1200-1210.	4.1	10
21	Scalability of the Heat and Current Treatment on SWCNTs to Improve their Crystallinity and Thermal and Electrical Conductivities. Nanoscale Research Letters, 2015, 10, 220.	5.7	2
22	Breakdown of metallic single-wall carbon nanotube paths by NiO nanoparticle point etching for high performance thin film transistors. Nanoscale, 2015, 7, 1280-1284.	5.6	3
23	The relationship between the growth rate and the lifetime in carbon nanotube synthesis. Nanoscale, 2015, 7, 8873-8878.	5.6	34
24	Robust and Soft Elastomeric Electronics Tolerant to Our Daily Lives. Nano Letters, 2015, 15, 5716-5723.	9.1	56
25	Interplay of wall number and diameter on the electrical conductivity of carbon nanotube thin films. Carbon, 2014, 67, 318-325.	10.3	56
26	Diameter control of single-walled carbon nanotube forests from 1.3–3.0 nm by arc plasma deposition. Scientific Reports, 2014, 4, 3804.	3.3	60
27	Absence of an Ideal Single-Walled Carbon Nanotube Forest Structure for Thermal and Electrical Conductivities. ACS Nano, 2013, 7, 10218-10224.	14.6	36
28	Influence of lengths of millimeter-scale single-walled carbon nanotube on electrical and mechanical properties of buckypaper. Nanoscale Research Letters, 2013, 8, 546.	5.7	52
29	Unexpectedly High Yield Carbon Nanotube Synthesis from Low-Activity Carbon Feedstocks at High Concentrations. ACS Nano, 2013, 7, 3150-3157.	14.6	35
30	Diameter and Density Control of Singleâ€Walled Carbon Nanotube Forests by Modulating Ostwald Ripening through Decoupling the Catalyst Formation and Growth Processes. Small, 2013, 9, 3584-3592.	10.0	52
31	A Fundamental Limitation of Small Diameter Single-Walled Carbon Nanotube Synthesis—A Scaling Rule of the Carbon Nanotube Yield with Catalyst Volume. Materials, 2013, 6, 2633-2641.	2.9	24
32	The Infinite Possible Growth Ambients that Support Single-Wall Carbon Nanotube Forest Growth. Scientific Reports, 2013, 3, 3334.	3.3	14
33	Hard magnetic ferrite with a gigantic coercivity and high frequency millimetre wave rotation. Nature Communications, 2012, 3, 1035.	12.8	184
34	Role of Subsurface Diffusion and Ostwald Ripening in Catalyst Formation for Single-Walled Carbon Nanotube Forest Growth. Journal of the American Chemical Society, 2012, 134, 2148-2153.	13.7	113
35	High magnetic permeability of ε-GaxFe2â^'xO3 magnets in the millimeter wave region. Journal of Applied Physics, 2010, 107, .	2.5	12
36	Synthesis, crystal structure, and magnetic properties of ε-Galll Fxelll O2â^'x3 nanorods. Journal of Appl Physics, 2009, 105, .	ied _{2.5}	8

SHUNSUKE SAKURAI

#	Article	IF	CITATIONS
37	First Observation of Phase Transformation of All Four Fe ₂ O ₃ Phases (γ → ε → β →) Ţ	j <u>F</u> TQq1 1 13.7	9.784314 293
38	Synthesis of an Electromagnetic Wave Absorber for High-Speed Wireless Communication. Journal of the American Chemical Society, 2009, 131, 1170-1173.	13.7	217
39	The Origin of Ferromagnetism in ε-Fe ₂ O ₃ and ε-Ga _{<i>x</i>} Fe _{2â``<i>x</i>} O ₃ Nanomagnets. Journal of Physical Chemistry C, 2009, 113, 11235-11238.	3.1	53
40	Large coercive field in magnetic-field oriented Îμ-Fe2O3 nanorods. Chemical Physics Letters, 2008, 458, 333-336.	2.6	56
41	Preparation of the Nanowire Form of ε-Fe ₂ O ₃ Single Crystal and a Study of the Formation Process. Journal of Physical Chemistry C, 2008, 112, 20212-20216.	3.1	49
42	A Millimeterâ€Wave Absorber Based on Gallium‣ubstituted εâ€Iron Oxide Nanomagnets. Angewandte Chemie - International Edition, 2007, 46, 8392-8395.	13.8	194
43	Inside Cover: A Millimeter-Wave Absorber Based on Gallium-Substituted É>-Iron Oxide Nanomagnets (Angew. Chem. Int. Ed. 44/2007). Angewandte Chemie - International Edition, 2007, 46, 8306-8306.	13.8	2
44	Synthesis, Crystal Structure, and Magnetic Properties of ϵâ€In _{<i>x</i>} Fe _{2–} _{<i>x</i>} O ₃ Nanorodâ€Shaped Magnets. Advanced Functional Materials, 2007, 17, 2278-2282.	. 14.9	53
45	Two-dimensional metamagnet composed of a cesium copper octacyanotungstate. Chemical Physics Letters, 2007, 446, 292-296.	2.6	23
46	Colored magnetic films composed of cyano-bridged metal assemblies and magneto-optical functionalities. Polyhedron, 2005, 24, 2901-2905.	2.2	10
47	Reorientation Phenomenon in a Magnetic Phase of ε-Fe2O3 Nanocrystal. Journal of the Physical Society of Japan, 2005, 74, 1946-1949.	1.6	80
48	Nonlinear Magnetooptical Effects Caused by Piezoelectric Ferromagnetism inF4Ì,,3m-type Prussian Blue Analogues. Journal of the American Chemical Society, 2005, 127, 11604-11605.	13.7	113
49	The addition effects of alkaline earth ions in the chemical synthesis of Îμ-Fe2O3 nanocrystals that exhibit a huge coercive field. Journal of Applied Physics, 2005, 97, 10K312.	2.5	80