
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2616939/publications.pdf Version: 2024-02-01

ΓΙ Δ1/ ΒΙΕΤΛ ΡΛΜΙΙΔ Λ

#	Article	IF	CITATIONS
1	Bulk and surface chemical functionalities of type III PAN-based carbon fibres. Carbon, 2003, 41, 1905-1915.	10.3	124
2	FTIR study of degradation products of aliphatic polyesters–carbon fibres composites. Journal of Molecular Structure, 2001, 596, 69-75.	3.6	102
3	Swelling of poly(3-alkylthiophene) films exposed to solvent vapors and humidity: Evaluation of solubility parameters. Synthetic Metals, 2007, 157, 726-732.	3.9	91
4	InÂvitro and inÂvivo degradation of poly(l-lactide-co-glycolide) films and scaffolds. Journal of Materials Science: Materials in Medicine, 2008, 19, 2063-2070.	3.6	84
5	Enzymatic mineralization of gellan gum hydrogel for bone tissue-engineering applications and its enhancement by polydopamine. Journal of Tissue Engineering and Regenerative Medicine, 2014, 8, 906-918.	2.7	84
6	Nanoscale organization of adsorbed collagen: Influence of substrate hydrophobicity and adsorption time. Journal of Colloid and Interface Science, 2004, 271, 80-91.	9.4	77
7	Degradation, Bioactivity, and Osteogenic Potential of Composites Made of PLGA and Two Different Sol–Gel Bioactive Glasses. Annals of Biomedical Engineering, 2011, 39, 2114-2129.	2.5	77
8	The influence of pore size on colonization of poly(l-lactide-glycolide) scaffolds with human osteoblast-like MG 63 cells inÂvitro. Journal of Materials Science: Materials in Medicine, 2008, 19, 425-435.	3.6	59
9	Injectable nanoparticle-loaded hydrogel system for local delivery of sodium alendronate. International Journal of Pharmaceutics, 2015, 485, 31-40.	5.2	59
10	Resorbable polymeric scaffolds for bone tissue engineering: The influence of their microstructure on the growth of human osteoblastâ€ike MG 63 cells. Journal of Biomedical Materials Research - Part A, 2009, 89A, 432-443.	4.0	57
11	Injectable self-gelling composites for bone tissue engineering based on gellan gum hydrogel enriched with different bioglasses. Biomedical Materials (Bristol), 2014, 9, 045014.	3.3	56
12	Physico-Chemical Characterization and Biological Tests of Collagen/Silk Fibroin/Chitosan Scaffolds Cross-Linked by Dialdehyde Starch. Polymers, 2020, 12, 372.	4.5	51
13	Superparamagnetic Iron Oxide Nanoparticles Modified with Silica Layers as Potential Agents for Lung Cancer Treatment. Nanomaterials, 2020, 10, 1076.	4.1	50
14	Incorporation of sol–gel bioactive glass into PLGA improves mechanical properties and bioactivity of composite scaffolds and results in their osteoinductive properties. Biomedical Materials (Bristol), 2014, 9, 065001.	3.3	49
15	Influence of the electrophoretic deposition route on the microstructure and properties of nano-hydroxyapatite/chitosan coatings on the Ti-13Nb-13Zr alloy. Surface and Coatings Technology, 2017, 324, 64-79.	4.8	49
16	Generation of composites for bone tissue-engineering applications consisting of gellan gum hydrogels mineralized with calcium and magnesium phosphate phases by enzymatic means. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 938-954.	2.7	47
17	PLGA-amoxicillin-loaded layer formed on anodized Ti alloy as a hybrid material for dental implant applications. Materials Science and Engineering C, 2019, 94, 998-1008.	7.3	45
18	Porous polymer/hydroxyapatite scaffolds: characterization and biocompatibility investigations. Journal of Materials Science: Materials in Medicine, 2009, 20, 1909-1915.	3.6	44

#	Article	IF	CITATIONS
19	Injectable gellan gum-based nanoparticles-loaded system for the local delivery of vancomycin in osteomyelitis treatment. Journal of Materials Science: Materials in Medicine, 2016, 27, 9.	3.6	43
20	Nanostructured collagen layers obtained by adsorption and drying. Journal of Colloid and Interface Science, 2004, 278, 63-70.	9.4	42
21	Electrochemical and biological characterization of coatings formed on Ti–15Mo alloy by plasma electrolytic oxidation. Materials Science and Engineering C, 2014, 43, 172-181.	7.3	41
22	Injectable hybrid delivery system composed of gellan gum, nanoparticles and gentamicin for the localized treatment of bone infections. Expert Opinion on Drug Delivery, 2016, 13, 613-620.	5.0	40
23	Ceramic scaffolds enriched with gentamicin loaded poly(lactide- co -glycolide) microparticles for prevention and treatment of bone tissue infections. Materials Science and Engineering C, 2016, 69, 856-864.	7.3	36
24	Thin film TiO2 photoanodes for water photolysis prepared by dc magnetron sputtering. Journal of Power Sources, 2007, 173, 774-780.	7.8	35
25	Controlling the supramolecular organisation of adsorbed collagen layers. Journal of Materials Science: Materials in Medicine, 2004, 15, 347-353.	3.6	34
26	Scaffolds with shape memory behavior for the treatment of large bone defects. Journal of Biomedical Materials Research - Part A, 2015, 103, 3503-3515.	4.0	34
27	Multilayer coatings formed on titanium alloy surfaces by plasma electrolytic oxidation-electrophoretic deposition methods. Electrochimica Acta, 2016, 204, 294-306.	5.2	34
28	Electrophoretic deposition and characterization of composite chitosan-based coatings incorporating bioglass and sol-gel glass particles on the Ti-13Nb-13Zr alloy. Surface and Coatings Technology, 2017, 319, 33-46.	4.8	33
29	On the electropolishing and anodic oxidation of Ti-15Mo alloy. Electrochimica Acta, 2016, 205, 256-265.	5.2	32
30	Bioinspired, biomimetic, double-enzymatic mineralization of hydrogels for bone regeneration with calcium carbonate. Materials Letters, 2017, 190, 13-16.	2.6	32
31	Enzymatic, urease-mediated mineralization of gellan gum hydrogel with calcium carbonate, magnesium-enriched calcium carbonate and magnesium carbonate for bone regeneration applications. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 3556-3566.	2.7	31
32	Influence of electropolishing and anodic oxidation on morphology, chemical composition and corrosion resistance of niobium. Materials Science and Engineering C, 2014, 42, 529-537.	7.3	30
33	Chemical composition, crystallographic structure and impedance spectroscopy of titanium oxynitride TiNxOy thin films. Solid State Ionics, 2011, 192, 693-698.	2.7	29
34	Electrochemical modification of the Ti-15Mo alloy surface in solutions containing ZnO and Zn3(PO4)2 particles. Materials Science and Engineering C, 2020, 115, 111098.	7.3	29
35	Linseed oil based nanocapsules as delivery system for hydrophobic quantum dots. Colloids and Surfaces B: Biointerfaces, 2013, 110, 1-7.	5.0	27
36	Novel injectable, self-gelling hydrogel–microparticle composites for bone regeneration consisting of gellan gum and calcium and magnesium carbonate microparticles. Biomedical Materials (Bristol), 2016, 11, 065011.	3.3	27

#	Article	IF	CITATIONS
37	Novel naturally derived whey protein isolate and aragonite biocomposite hydrogels have potential for bone regeneration. Materials and Design, 2020, 188, 108408.	7.0	26
38	Hydrolytic degradation of porous scaffolds for tissue engineering from terpolymer of l-lactide, ε-caprolactone and glycolide. Journal of Molecular Structure, 2005, 744-747, 557-562.	3.6	25
39	Enzymatically induced mineralization of plateletâ€rich fibrin. Journal of Biomedical Materials Research - Part A, 2012, 100A, 1335-1346.	4.0	25
40	Cytocompatibility of aliphatic polyesters— <i>In vitro</i> study on fibroblasts and macrophages. Journal of Biomedical Materials Research - Part A, 2008, 87A, 524-535.	4.0	24
41	Hybrid oxide-polymer layer formed on Ti-15Mo alloy surface enhancing antibacterial and osseointegration functions. Surface and Coatings Technology, 2016, 302, 158-165.	4.8	24
42	A study on the melting and crystallization of polyoxymethylene opolymer/hydroxyapatite nanocomposites. Polymers for Advanced Technologies, 2013, 24, 318-330.	3.2	23
43	Composites of gellan gum hydrogel enzymatically mineralized with calcium-zinc phosphate for bone regeneration with antibacterial activity. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1610-1618.	2.7	23
44	Animal models of smoke inhalation injury and related acute and chronic lung diseases. Advanced Drug Delivery Reviews, 2018, 123, 107-134.	13.7	22
45	Pectin coatings on titanium alloy scaffolds produced by additive manufacturing: Promotion of human bone marrow stromal cell proliferation. Materials Letters, 2018, 227, 225-228.	2.6	22
46	Fluorineâ€Based Plasma Treatment of Biocompatible Silicone Elastomer: The Effect of Temperature on Etch Rate and Surface Properties. Plasma Processes and Polymers, 2008, 5, 246-255.	3.0	21
47	Poly(<scp>L</scp> ″actideâ€ <i>co</i> â€glycolide) scaffolds coated with collagen and glycosaminoglycans: Impact on proliferation and osteogenic differentiation of human mesenchymal stem cells. Journal of Biomedical Materials Research - Part A, 2013, 101, 3109-3122.	4.0	21
48	Enrichment of enzymatically mineralized gellan gum hydrogels with phlorotannin-rich <i>Ecklonia cava</i> extract Seanol [®] to endow antibacterial properties and promote mineralization. Biomedical Materials (Bristol), 2016, 11, 045015.	3.3	21
49	Electrophoretic Deposition, Microstructure and Selected Properties of Composite Alumina/Polyetheretherketone Coatings on the Ti-13Nb-13Zr Alloy. Journal of the Electrochemical Society, 2018, 165, D116-D128.	2.9	21
50	The Influence of Chain Microstructure of Biodegradable Copolyesters Obtained with Low-Toxic Zirconium Initiator to <i>In Vitro</i> Biocompatibility. BioMed Research International, 2013, 2013, 1-12.	1.9	20
51	Biofunctionalization of Ti–13Nb–13Zr alloy surface by plasma electrolytic oxidation. Part II. Surface and Coatings Technology, 2015, 276, 23-30.	4.8	20
52	Antibacterial and cytocompatible coatings based on poly(adipic anhydride) for a Ti alloy surface. Bioactive Materials, 2020, 5, 709-720.	15.6	20
53	New calciumâ€free Na ₂ O–Al ₂ O ₃ –P ₂ O ₅ bioactive glasses with potential applications in bone tissue engineering. Journal of the American Ceramic Society, 2018, 101, 602-611.	3.8	19
54	Composites Based on Gellan Gum, Alginate and Nisin-Enriched Lipid Nanoparticles for the Treatment of Infected Wounds. International Journal of Molecular Sciences, 2022, 23, 321.	4.1	19

#	Article	IF	CITATIONS
55	Effects of Aliphatic Polyesters on Activation of the Immune System: Studies on Macrophages. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 715-738.	3.5	18
56	Mineralization of gellan gum hydrogels with calcium and magnesium carbonates by alternate soaking in solutions of calcium/magnesium and carbonate ion solutions. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1825-1834.	2.7	18
57	Stimuli-sensitive fatty acid-based microparticles for the treatment of lung cancer. Materials Science and Engineering C, 2020, 111, 110801.	7.3	18
58	Ceramic scaffolds with immobilized vancomycin-loaded poly(lactide-co-glycolide) microparticles for bone defects treatment. Materials Letters, 2017, 190, 67-70.	2.6	17
59	Biomimetic in situ precipitation of calcium phosphate containing silver nanoparticles on zirconia ceramic materials for surface functionalization in terms of antimicrobial and osteoconductive properties. Dental Materials, 2021, 37, 10-18.	3.5	17
60	Gentamicin-Loaded Polysaccharide Membranes for Prevention and Treatment of Post-operative Wound Infections in the Skeletal System. Pharmaceutical Research, 2017, 34, 2075-2083.	3.5	16
61	Influence of Radiation Sterilization on Properties of Biodegradable Lactide/Glycolide/Trimethylene Carbonate and Lactide/Glycolide/ε-caprolactone Porous Scaffolds with Shape Memory Behavior. Materials, 2016, 9, 64.	2.9	15
62	Physico-chemical and biological evaluation of doxycycline loaded into hybrid oxide-polymer layer on Ti–Mo alloy. Bioactive Materials, 2020, 5, 553-563.	15.6	15
63	Polarization of modified titanium and titanium–zirconium creates nano-structures while hydride formation is modulated. Applied Surface Science, 2013, 282, 7-16.	6.1	14
64	Modification of heat-induced whey protein isolate hydrogel with highly bioactive glass particles results in promising biomaterial for bone tissue engineering. Materials and Design, 2021, 205, 109749.	7.0	14
65	Poly(<scp>L</scp> â€lactideâ€ <i>co</i> â€glycolide) microporous membranes for medical applications produced with the use of polyethylene glycol as a pore former. Journal of Applied Polymer Science, 2012, 125, E187.	2.6	13
66	Lactoferrin and collagen type I as components of composite formed on titanium alloys for bone replacement. Surface and Coatings Technology, 2017, 328, 1-12.	4.8	13
67	Sodium alendronate loaded poly(<scp>l</scp> -lactide- <i>co</i> -glycolide) microparticles immobilized on ceramic scaffolds for local treatment of bone defects. International Journal of Energy Production and Management, 2021, 8, 293-302.	3.7	13
68	Gentamicin loaded PLGA nanoparticles as local drug delivery system for the osteomyelitis treatment. Acta of Bioengineering and Biomechanics, 2015, 17, 41-8.	0.4	13
69	Influence of surface properties of carbon fibres on the adsorption of catalase. Carbon, 2005, 43, 1432-1438.	10.3	12
70	Oxygen plasma surface modification augments poly(Lâ€lactideâ€ <i>co</i> â€glycolide) cytocompatibility toward osteoblasts and minimizes immune activation of macrophages. Journal of Biomedical Materials Research - Part A, 2015, 103, 3965-3977.	4.0	12
71	Is Dialdehyde Chitosan a Good Substance to Modify Physicochemical Properties of Biopolymeric Materials?. International Journal of Molecular Sciences, 2021, 22, 3391.	4.1	12
72	Positron Annihilation in Carbon Fibers. Physica Status Solidi A, 1995, 151, 39-46.	1.7	11

#	Article	IF	CITATIONS
73	Mechanical properties of (poly(<scp>L</scp> â€lactideâ€ <i>co</i> â€glycolide))â€based fibers coated with hydroxyapatite layer. Journal of Applied Polymer Science, 2011, 121, 3702-3709.	2.6	11
74	Thin Films of TiO ₂ :N for Photo-Electrochemical Applications. Journal of Nanoscience and Nanotechnology, 2012, 12, 4703-4709.	0.9	11
75	Ca:Mg:Zn:CO 3 and Ca:Mg:CO 3 —tri- and bi-elemental carbonate microparticles for novel injectable self-gelling hydrogel–microparticle composites for tissue regeneration. Biomedical Materials (Bristol), 2017, 12, 025015.	3.3	11
76	Biodegradable polycarbonates containing side carboxyl groups—synthesis, properties, and degradation study. Journal of Polymer Science Part A, 2017, 55, 2756-2769.	2.3	11
77	Own brand label restorative materials—A false bargain?. Journal of Dentistry, 2017, 56, 84-98.	4.1	11
78	Influence of pore size and hydroxyapatite deposition in poly(l-lactide-co-glycolide) scaffolds on osteoblast-like cells cultured in static and dynamic conditions. Materials Letters, 2019, 241, 1-5.	2.6	11
79	Synergistic effect of bimodal pore distribution and artificial extracellular matrices in polymeric scaffolds on osteogenic differentiation of human mesenchymal stem cells. Materials Science and Engineering C, 2019, 97, 12-22.	7.3	11
80	Synthesis and Properties of Bioresorbable Block Copolymers of l-Lactide, Glycolide, Butyl Succinate and Butyl Citrate. Polymers, 2020, 12, 214.	4.5	11
81	Surface Functionalization of Poly(l-lactide-co-glycolide) Membranes with RGD-Grafted Poly(2-oxazoline) for Periodontal Tissue Engineering. Journal of Functional Biomaterials, 2022, 13, 4.	4.4	11
82	The Gene Expression of Human Endothelial Cells Is Modulated by Subendothelial Extracellular Matrix Proteins: Short-Term Response to Laminar Shear Stress. Tissue Engineering - Part A, 2014, 20, 2253-2264.	3.1	10
83	Fluorescence assay for the determination of glutathione based on a ring-fused 2-pyridone derivative in dietary supplements. Analyst, The, 2021, 146, 1897-1906.	3.5	10
84	Plasma electrolytic oxidation as an effective tool for production of copper incorporated bacteriostatic coatings on Ti-15Mo alloy. Applied Surface Science, 2021, 563, 150284.	6.1	10
85	Surface characterization, collagen adsorption and cell behaviour on poly(L-lactide-co-glycolide). Acta of Bioengineering and Biomechanics, 2011, 13, 63-75.	0.4	10
86	In vitro response of macrophages to a new carbon-polylactide composite for the treatment of periodontal diseases. Biomaterials, 2002, 23, 463-470.	11.4	9
87	Increased reactivity and in vitro cell response of titanium based implant surfaces after anodic oxidation. Journal of Materials Science: Materials in Medicine, 2013, 24, 2761-2773.	3.6	9
88	Advancements in structure–property correlation studies of cross-linked citric acid-based elastomers from the perspective of medical application. Journal of Materials Chemistry B, 2021, 9, 6425-6440.	5.8	9
89	Surface-Modified Poly(l-lactide-co-glycolide) Scaffolds for the Treatment of Osteochondral Critical Size Defects—In Vivo Studies on Rabbits. International Journal of Molecular Sciences, 2020, 21, 7541.	4.1	8
90	Structural Changes in Surface-Modified Polymers for Medical Applications. Acta Physica Polonica A, 2008, 113, 1485-1493.	0.5	8

#	Article	IF	CITATIONS
91	Poly(amidoamine) Dendrimers as Nanocarriers for 5-Fluorouracil: Effectiveness of Complex Formation and Cytotoxicity Studies. International Journal of Molecular Sciences, 2021, 22, 11167.	4.1	8
92	Poly(L-lactide-co-glycolide) thin films can act as autologous cell carriers for skin tissue engineering. Cellular and Molecular Biology Letters, 2014, 19, 297-314.	7.0	7
93	Marine-Inspired Enzymatic Mineralization of Dairy-Derived Whey Protein Isolate (WPI) Hydrogels for Bone Tissue Regeneration. Marine Drugs, 2020, 18, 294.	4.6	7
94	Hydrolytic Degradation of Poly(L-Lactide-co-Glycolide) Studied by Positron Annihilation Lifetime Spectroscopy and Other Techniques. Acta Physica Polonica A, 2006, 110, 631-640.	0.5	7
95	Biofunctionalization of poly(l-lactide-co-glycolide) by post-plasma grafting of 2-aminoethyl methacrylate and gelatin immobilization. Materials Letters, 2015, 139, 344-347.	2.6	6
96	Distinct Influence of Saturated Fatty Acids on Malignant and Nonmalignant Human Lung Epithelial Cells. Lipids, 2020, 55, 117-126.	1.7	6
97	Polymeric Microspheres/Cells/Extracellular Matrix Constructs Produced by Auto-Assembly for Bone Modular Tissue Engineering. International Journal of Molecular Sciences, 2021, 22, 7897.	4.1	6
98	Resorbable scaffolds modified with collagen type I or hydroxyapatite: in vitro studies on human mesenchymal stem cells. Acta of Bioengineering and Biomechanics, 2013, 15, 61-7.	0.4	6
99	Development of highly porous calcium phosphate bone cements applying nonionic surface active agents. RSC Advances, 2021, 11, 23908-23921.	3.6	5
100	Surface modification of polyurethane with eptifibatide-loaded degradable nanoparticles reducing risk of blood coagulation. Colloids and Surfaces B: Biointerfaces, 2021, 201, 111624.	5.0	5
101	Evaluation of the In Vitro Stability of Stimuli-Sensitive Fatty Acid-Based Microparticles for the Treatment of Lung Cancer. Langmuir, 2020, 36, 11138-11146.	3.5	4
102	The influence of sintering conditions on microstructure and mechanical properties of titanium dioxide scaffolds for the treatment of bone tissue defects. Acta of Bioengineering and Biomechanics, 2015, 17, 3-9.	0.4	4
103	Biocompatibility evaluation of glycolideâ€containing polyesters in contact with osteoblasts and fibroblasts. Journal of Applied Polymer Science, 2013, 127, 3256-3268.	2.6	3
104	Impact of Poly(L-lactide) versus Poly(L-Lactide-co-Trimethylene Carbonate) on Biological Characteristics of Fibroblasts and Osteoblasts*. Folia Biologica, 2013, 61, 11-24.	0.5	3
105	Surface Modification of Polyetheretherketone by Helium/nitrogen and Nitrous Oxide Plasma Enhanced Chemical Vapour Deposition. High Temperature Materials and Processes, 2014, 33, 147-153.	1.4	2
106	Polymeric Scaffolds: Design, Processing, and Biomedical Application. International Journal of Molecular Sciences, 2021, 22, 4552.	4.1	2
107	Influence of Electrolytic Polishing and Anodic Passivation on Corrosion Resistance of Ti-15Mo Alloy. Solid State Phenomena, 0, 227, 499-502.	0.3	1
108	One step 3D printing of surface functionalized composite scaffolds for tissue engineering applications. Acta of Bioengineering and Biomechanics, 2018, 20, 35-45.	0.4	1

#	Article	IF	CITATIONS
109	Nanostructured layers of adsorbed collagen: conditions, mechanisms and applications. , 2004, , 98-104.		0
110	Effect of Sterilization on Biodegradable Composite Material for Controlled Tissue Regeneration. , 2005, , 116-121.		0
111	The 27th European conference on biomaterials: facts and figures. Journal of Materials Science: Materials in Medicine, 2016, 27, 94.	3.6	0
112	Evaluation of mechanical properties of poly (methyl methacrylate) reinforced with glass fibers. Protetyka Stomatologiczna, 2018, 68, 3-15.	0.1	0
113	Enrichment of thermosensitive chitosan hydrogels with glycerol and alkaline phosphatase for bone tissue engineering applications. Acta of Bioengineering and Biomechanics, 2016, 18, 51-7.	0.4	0