Tapas T Sen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2616512/publications.pdf

Version: 2024-02-01

		201385	149479
58	4,703 citations	27	56
papers	citations	h-index	g-index
59	59	59	7329
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Advanced Drug Delivery Reviews, 2011, 63, 24-46.	6.6	1,555
2	Surface Modification of Magnetic Nanoparticles with Alkoxysilanes and Their Application in Magnetic Bioseparations. Langmuir, 2005, 21, 7029-7035.	1.6	417
3	Synthesis, characterisation and application of silica-magnetite nanocomposites. Journal of Magnetism and Magnetic Materials, 2004, 284, 145-160.	1.0	265
4	Mesoporous Silicaâ^'Magnetite Nanocomposite:Â Fabrication and Applications in Magnetic Bioseparations. Journal of the American Chemical Society, 2006, 128, 7130-7131.	6.6	262
5	Fe3O4@mesoporous SBA-15: a robust and magnetically recoverable catalyst for one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones via the Biginelli reaction. Dalton Transactions, 2012, 41, 6173.	1.6	225
6	Multifunctional magnetite and silica–magnetite nanoparticles: Synthesis, surface activation and applications in life sciences. Journal of Magnetism and Magnetic Materials, 2005, 293, 33-40.	1.0	203
7	Wetting stability of Si-MCM-41 mesoporous material in neutral, acidic and basic aqueous solutions. Microporous and Mesoporous Materials, 1999, 33, 149-163.	2.2	170
8	One-Pot Synthesis of Hierarchically Ordered Porous-Silica Materials with Three Orders of Length Scale. Angewandte Chemie - International Edition, 2003, 42, 4649-4653.	7.2	146
9	Synthesis and Characterization of Hierarchically Ordered Porous Silica Materials. Chemistry of Materials, 2004, 16, 2044-2054.	3.2	137
10	Incorporation of vanadium species in a dealuminated \hat{l}^2 zeolite. Chemical Communications, 1998, , 87-88.	2.2	136
11	Incorporation of Vanadium in Zeolite Lattices:Â Studies of the MEL (ZSM-11) System. The Journal of Physical Chemistry, 1996, 100, 3809-3817.	2.9	85
12	Mesoporous alumina catalytic material prepared by grafting wide-pore MCM-41 with an alumina multilayer. Microporous and Mesoporous Materials, 2001, 49, 65-81.	2.2	72
13	Visible Light-Driven Selective Organic Degradation by FeTiO3/Persulfate System: the Formation and Effect of High Valent Fe(IV). Applied Catalysis B: Environmental, 2021, 280, 119414.	10.8	67
14	The Nature of Vanadium in Vanado-Silicate (MFI) Molecular Sieves: Influence of Synthesis Methods. Journal of Catalysis, 1996, 163, 354-364.	3.1	66
15	Mesoporous silica–magnetite nanocomposites: Fabrication, characterisation and applications in biosciences. Microporous and Mesoporous Materials, 2009, 120, 246-251.	2.2	61
16	Meso-cellular silica foams, macro-cellular silica foams and mesoporous solids: a study of emulsion-mediated synthesis. Microporous and Mesoporous Materials, 2005, 78, 255-263.	2.2	57
17	Macro-cellular silica foams: synthesis during the natural creaming process of an oil-in-water emulsion. Chemical Communications, 2003, , 2182.	2.2	52
18	Design of water-based ferrofluids as contrast agents for magnetic resonance imaging. Journal of Colloid and Interface Science, 2011, 357, 50-55.	5.0	47

#	Article	IF	CITATIONS
19	Synthesis, Characterization and Catalytic properties of Zeolite PSH-3/MCM-22 Studies in Surface Science and Catalysis, 1994, 84, 331-338.	1.5	40
20	Fabrication of novel hierarchically ordered porous magnetic nanocomposites for bio-catalysis. Chemical Communications, 2010, 46, 6807.	2.2	40
21	Novel large-pore vanadium alumino- and boro-silicates with BEA structure. Journal of the Chemical Society Chemical Communications, 1995, , 207.	2.0	39
22	Extraction of DNA from soil using nanoparticles by magnetic bioseparation. Letters in Applied Microbiology, 2008, 46, 488-491.	1.0	39
23	Carbonâ€Dotâ€Sensitized, Nitrogenâ€Doped TiO ₂ in Mesoporous Silica for Water Decontamination through Nonhydrophobic Enrichment–Degradation Mode. Chemistry - A European Journal, 2015, 21, 17944-17950.	1.7	38
24	Silicon, silica and its surface patterning/activation with alkoxy- and amino-silanes for nanomedical applications. Nanomedicine, 2011, 6, 281-300.	1.7	35
25	Anisotropic Chemical Shielding, M-Site Ordering, and Characterization of Extraframework Cations in ETS-10 Studied through MAS/MQ-MAS NMR and Molecular Modeling Techniques. Journal of the American Chemical Society, 1998, 120, 4752-4762.	6.6	34
26	Novel Multifunctional Carbon Nanotube Containing Silver and Iron Oxide Nanoparticles for Antimicrobial Applications in Water Treatment. Materials Today: Proceedings, 2017, 4, 57-64.	0.9	31
27	Triazine containing N-rich microporous organic polymers for CO 2 capture and unprecedented CO 2 /N 2 selectivity. Journal of Solid State Chemistry, 2017, 247, 113-119.	1.4	29
28	Metal–Organic Framework MIL-101(Fe) Nanoparticles Decorated with Ag Nanoparticles for Regulating the Photocatalytic Phenol Oxidation Pathway for Cr(VI) Reduction. ACS Applied Nano Materials, 2021, 4, 4513-4521.	2.4	29
29	Surface engineering of nanoparticles in suspension for particle based bio-sensing. Scientific Reports, 2012, 2, 564.	1.6	26
30	Simple one-pot fabrication of ultra-stable core-shell superparamagnetic nanoparticles for potential application in drug delivery. RSC Advances, 2012, 2, 5221.	1.7	23
31	Iron Oxide-Based Magneto-Optical Nanocomposites for In Vivo Biomedical Applications. Biomedicines, 2021, 9, 288.	1.4	23
32	Surface functionalisation of magnetic nanoparticles: quantification of surface to bulk amine density. Micro and Nano Letters, 2010, 5, 282.	0.6	20
33	A 31P Dynamic NMR Study of the Bond Shift Rearragement in Solid Li3P7. Journal of the American Chemical Society, 2000, 122, 889-896.	6.6	19
34	Iron oxide nanoparticles conjugated with organic optical probes for <i>inÂvivo</i> diagnostic and therapeutic applications. Nanomedicine, 2021, 16, 943-962.	1.7	19
35	Preparation and characterisation of porous silica and silica/titania monoliths for potential use in bone replacement. Microporous and Mesoporous Materials, 2012, 156, 51-61.	2.2	17
36	Sensitive and easily recyclable plasmonic SERS substrate based on Ag nanowires in mesoporous silica. RSC Advances, 2014, 4, 57743-57748.	1.7	15

#	Article	IF	CITATIONS
37	Catalytic Transformation of Ethanol over Microporous Vanadium Silicate Molecular Sieves with MEL Structure (VS-2). Journal of Catalysis, 1997, 170, 304-310.	3.1	14
38	Dispersion of magnetic nanoparticles in suspension. Micro and Nano Letters, 2006, 1, 39.	0.6	14
39	Superparamagnetic Nanoparticles Direct Differentiation of Embryonic Stem Cells Into Skeletal Muscle Cells. Journal of Biomaterials and Tissue Engineering, 2014, 4, 579-585.	0.0	14
40	Drug-loaded liposome-capped mesoporous core–shell magnetic nanoparticles for cellular toxicity study. Nanomedicine, 2016, 11, 2757-2767.	1.7	12
41	Multinuclear MAS NMR spectroscopic study of the zeolite, MCM-22. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 3549.	1.7	11
42	Enzyme immobilised novel core–shell superparamagnetic nanocomposites for enantioselective formation of 4-(R)-hydroxycyclopent-2-en-1-(S)-acetate. Chemical Communications, 2014, 50, 11185-11187.	2.2	11
43	The fabrication and characterization of stable core-shell superparamagnetic nanocomposites for potential application in drug delivery. Journal of Applied Physics, 2015, 117, 17D139.	1.1	11
44	A recent trend of drug-nanoparticles in suspension for the application in drug delivery. Nanomedicine, 2016, 11, 2861-2876.	1.7	10
45	Dynamics and Ordering in the Columnar Mesophases of Octa-alkyloxy Orthocylophane:Â A Carbon-13 NMR Investigation. Journal of Physical Chemistry B, 2003, 107, 13033-13043.	1.2	9
46	A hierarchically ordered porous novel vanado-silicate catalyst for highly efficient oxidation of bulky organic molecules. Chemical Communications, 2012, 48, 4232.	2.2	8
47	Tunable Self-Assembled Peptide Structure: A Novel Approach to Design Dual-Use Biological Agents. Materials Today: Proceedings, 2017, 4, 32-40.	0.9	8
48	Targeting nonapoptotic pathways with functionalized nanoparticles for cancer therapy: current and future perspectives. Nanomedicine, 2021, 16, 1049-1065.	1.7	7
49	Superparamagnetic iron oxide nanoparticles (SPIONs) as therapeutic and diagnostic agents., 2022,, 455-497.		7
50	Bond-Shift Rearrangement in Solid Li3P7(Monoglyme)3: A 31P MAS NMR Study. Journal of Magnetic Resonance, 2001, 153, 227-237.	1.2	6
51	Hierarchical porous TiO2 single crystals templated from partly glassified polystyrene. Journal of Colloid and Interface Science, 2019, 538, 248-255.	5.0	6
52	A magnetically recoverable nanocatalyst based on functionalized mesoporous silica. Journal of Molecular Catalysis A, 2016, 415, 17-26.	4.8	5
53	Fluorescein-entrapped magnetosomes for magnetically assisted photodynamic therapy. Nanomedicine, 2021, 16, 883-894.	1.7	4
54	Special Focus Issue Part I: Functional nanomaterials in cancer therapy. Nanomedicine, 2021, 16, 879-882.	1.7	3

#	Article	IF	CITATIONS
55	Editorial preface: A special issue on themes (i) Nano-energy / Environmental for a better Society and (iii) Nano-catalysis for Green technology. Materials Today: Proceedings, 2017, 4, 1-8.	0.9	1
56	Advances in multi-functional superparamagnetic iron oxide nanoparticles in magnetic fluid hyperthermia for medical applications., 2020,, 333-345.		1
57	Cu(II)-grafted 2D-hexagonal mesoporous material as an efficient catalyst for Sonogashira C-C cross-coupling reaction. Materials Today: Proceedings, 2021, 45, 3733-3740.	0.9	1
58	Exploitation of functional nanomaterials in therapy and diagnostics. Nanomedicine, 2016, 11, 2753-2755.	1.7	1