Jeffrey S Erickson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2616147/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Field Demonstration of a Distributed Microsensor Network for Chemical Detection. Sensors, 2020, 20, 5424.	3.8	1
2	Multilayer Epitaxial Graphene on Silicon Carbide: A Stable Working Electrode for Seawater Samples Spiked with Environmental Contaminants. Sensors, 2020, 20, 4006.	3.8	4
3	Development of a Colorimetric Sensor for Autonomous, Networked, Real-Time Application. Sensors, 2020, 20, 5857.	3.8	7
4	Environmental Chemical and Biological Sensing Using Colorimetric Arrays. ECS Meeting Abstracts, 2020, MA2020-01, 2268-2268.	0.0	0
5	Synthetic Biology Tools for the Fast-Growing Marine Bacterium <i>Vibrio natriegens</i> . ACS Synthetic Biology, 2019, 8, 2069-2079.	3.8	60
6	Machine Learning Techniques for Chemical Identification Using Cyclic Square Wave Voltammetry. Sensors, 2019, 19, 2392.	3.8	31
7	Multiplexed, Optical Reflectance Data in Chemical Detection. , 2019, , .		0
8	Characterizing Electron Transport through Living Biofilms. Journal of Visualized Experiments, 2018, , .	0.3	8
9	Hybrid Liquid Crystal Nanocarriers for Enhanced Zinc Phthalocyanine-Mediated Photodynamic Therapy. Bioconjugate Chemistry, 2018, 29, 2701-2714.	3.6	14
10	Reflectance-based detection for long term environmental monitoring. Heliyon, 2017, 3, e00312.	3.2	4
11	A Simple and Inexpensive Electrochemical Assay for the Identification of Nitrogen Containing Explosives in the Field. Sensors, 2017, 17, 1769.	3.8	20
12	Development of a Detection Algorithm for Use with Reflectance-Based, Real-Time Chemical Sensing. Sensors, 2016, 16, 1927.	3.8	4
13	Measuring conductivity of living Geobacter sulfurreducens biofilms. Nature Nanotechnology, 2016, 11, 910-913.	31.5	99
14	Reflectance-based detection of oxidizers in ambient air. Sensors and Actuators B: Chemical, 2016, 227, 399-402.	7.8	9
15	Imaging cellular membrane potential through ionization of quantum dots. , 2016, , .		1
16	Nanocomposites: Sweet Substrate: A Polysaccharide Nanocomposite for Conformal Electronic Decals (Adv. Mater. 9/2015). Advanced Materials, 2015, 27, 1636-1636.	21.0	0
17	Nanoparticle-Surface Interactions in Geometrical Separation Devices. Chromatography (Basel), 2015, 2, 567-579.	1.2	0
18	Electric Field Modulation of Semiconductor Quantum Dot Photoluminescence: Insights Into the Design of Robust Voltage-Sensitive Cellular Imaging Probes. Nano Letters, 2015, 15, 6848-6854.	9.1	85

JEFFREY S ERICKSON

#	Article	IF	CITATIONS
19	Thermally activated long range electron transport in living biofilms. Physical Chemistry Chemical Physics, 2015, 17, 32564-32570.	2.8	108
20	Load-Induced Hydrodynamic Lubrication of Porous Films. ACS Applied Materials & Interfaces, 2015, 7, 17587-17591.	8.0	13
21	Sweet Substrate: A Polysaccharide Nanocomposite for Conformal Electronic Decals. Advanced Materials, 2015, 27, 1600-1606.	21.0	41
22	Electrochemical Detection with Preconcentration: Nitroenergetic Contaminants. Chemosensors, 2014, 2, 131-144.	3.6	1
23	Electron Transport through Early Exponentialâ€Phase Anodeâ€Grown <i>Geobacter sulfurreducens</i> Biofilms. ChemElectroChem, 2014, 1, 1957-1965.	3.4	17
24	Biomimetic Bidirectional Switchable Adhesive Inspired by the Gecko. Advanced Functional Materials, 2014, 24, 574-579.	14.9	86
25	Contact angles on surfaces using mean field theory: nanodroplets vs. nanoroughness. Nanoscale, 2014, 6, 5260-5269.	5.6	21
26	Miniaturized reflectance devices for chemical sensing. Measurement Science and Technology, 2014, 25, 095101.	2.6	11
27	Adhesives: Biomimetic Bidirectional Switchable Adhesive Inspired by the Gecko (Adv. Funct. Mater.) Tj ETQq1 1 (0.784314 14.914	rgBT /Overloc
28	Catch and Release: Integrated System for Multiplexed Detection of Bacteria. Analytical Chemistry, 2013, 85, 4944-4950.	6.5	34
29	Reconfigurable acquisition system with integrated optics for a portable flow cytometer. Review of Scientific Instruments, 2013, 84, 115109.	1.3	1
30	<i>In Situ</i> Phytoplankton Analysis: There's Plenty of Room at the Bottom. Analytical Chemistry, 2012, 84, 839-850.	6.5	39
31	Long-range electron transport in <i>Geobacter sulfurreducens</i> biofilms is redox gradient-driven. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15467-15472.	7.1	231
32	Design and Fabrication of Gecko-Inspired Adhesives. Langmuir, 2012, 28, 5737-5742.	3.5	90
33	A microflow cytometer for optical analysis of phytoplankton. Proceedings of SPIE, 2012, , .	0.8	3
34	Microflow Cytometer for optical analysis of phytoplankton. Biosensors and Bioelectronics, 2011, 26, 4263-4269.	10.1	69
35	Optofluidic characterization of marine algae using a microflow cytometer. Biomicrofluidics, 2011, 5, 32009-320099.	2.4	79
36	Dynamic reversibility of hydrodynamic focusing for recycling sheath fluid. Lab on A Chip, 2010, 10, 1952.	6.0	31

3

JEFFREY S ERICKSON

#	Article	IF	CITATIONS
37	Microflow Cytometer Electronics. , 2010, , .		0
38	Multiplexed Detection of Bacteria and Toxins Using a Microflow Cytometer. Analytical Chemistry, 2009, 81, 5426-5432.	6.5	101
39	A simple sheath-flow microfluidic device for micro/nanomanufacturing: fabrication of hydrodynamically shaped polymer fibers. Lab on A Chip, 2009, 9, 3126.	6.0	76
40	Multi-wavelength microflow cytometer using groove-generated sheath flow. Lab on A Chip, 2009, 9, 1942.	6.0	140
41	Microflow cytometer. Proceedings of SPIE, 2009, , .	0.8	1
42	The good, the bad, and the tiny: a review of microflow cytometry. Analytical and Bioanalytical Chemistry, 2008, 391, 1485-1498.	3.7	216
43	Home diagnostics to music. Nature, 2008, 456, 178-179.	27.8	22
44	Two simple and rugged designs for creating microfluidic sheath flow. Lab on A Chip, 2008, 8, 1097.	6.0	110
45	A Parametric Study of Sample Lysis and DNA Purification Techniques for Use in Automated Devices. Analytical Letters, 2008, 41, 1701-1719.	1.8	1
46	Components for automated microfluidics sample preparation and analysis. , 2008, , .		0
47	The beadwhacker for maintaining even dispersion of micron-sized beads. Measurement Science and Technology, 2007, 18, N1-N4.	2.6	0
48	Blind Laboratory Trials for Multiple Pathogens in Spiked Food Matrices. Analytical Letters, 2007, 40, 3219-3231.	1.8	14
49	Automated module for hybridization and staining of commercially produced nucleic acid microarrays. Microfluidics and Nanofluidics, 2007, 3, 623-628.	2.2	2
50	Diagnosis on disc. Nature, 2006, 440, 159-160.	27.8	14
51	Monte Carlo simulations on the effect of substrate geometry on adsorption and compression. Journal of Chemical Physics, 2004, 120, 11765-11774.	3.0	10
52	Solution Microstructure of Confined Fluids with Directional Interactions under the Influence of an External Field: Mean Field Considerations. Molecular Simulation, 2004, 30, 507-520.	2.0	5
53	Lattice gas 2D/3D equilibria: Chemical potentials and adsorption isotherms with correct critical points. Journal of Chemical Physics, 2004, 120, 5208-5216.	3.0	17
54	A simple model for ordering in adsorbed layers. Molecular Physics, 2002, 100, 2121-2137.	1.7	11

#	Article	IF	CITATIONS
55	Evidence that the Induction Time in the Surface Pressure Evolution of Lysozyme Solutions Is Caused by a Surface Phase Transition. Langmuir, 2000, 16, 5072-5078.	3.5	64