Sjors H W Scheres

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2615968/publications.pdf

Version: 2024-02-01

12330 23533 34,802 116 69 111 citations h-index g-index papers 170 170 170 27905 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	RELION: Implementation of a Bayesian approach to cryo-EM structure determination. Journal of Structural Biology, 2012, 180, 519-530.	2.8	4,715
2	New tools for automated high-resolution cryo-EM structure determination in RELION-3. ELife, 2018, 7, .	6.0	3,965
3	Cryo-EM structures of tau filaments from Alzheimer's disease. Nature, 2017, 547, 185-190.	27.8	1,502
4	Prevention of overfitting in cryo-EM structure determination. Nature Methods, 2012, 9, 853-854.	19.0	1,104
5	Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2. ELife, 2016, 5, .	6.0	919
6	Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nature, 2020, 588, 498-502.	27.8	918
7	High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy. Ultramicroscopy, 2013, 135, 24-35.	1.9	843
8	A Bayesian View on Cryo-EM Structure Determination. Journal of Molecular Biology, 2012, 415, 406-418.	4.2	765
9	How cryo-EM is revolutionizing structural biology. Trends in Biochemical Sciences, 2015, 40, 49-57.	7.5	709
10	A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis. IUCrJ, 2019, 6, 5-17.	2.2	696
11	Structures of filaments from Pick's disease reveal a novel tau protein fold. Nature, 2018, 561, 137-140.	27.8	625
12	Estimation of high-order aberrations and anisotropic magnification from cryo-EM data sets in <i>RELION</i> -3.1. IUCrJ, 2020, 7, 253-267.	2.2	574
13	Single-particle cryo-EM at atomic resolution. Nature, 2020, 587, 152-156.	27.8	572
14	Sampling the conformational space of the catalytic subunit of human \hat{I}^3 -secretase. ELife, 2015, 4, .	6.0	556
15	Novel tau filament fold in chronic traumatic encephalopathy encloses hydrophobic molecules. Nature, 2019, 568, 420-423.	27.8	528
16	Structure of the Yeast Mitochondrial Large Ribosomal Subunit. Science, 2014, 343, 1485-1489.	12.6	521
17	Processing of Structurally Heterogeneous Cryo-EM Data in RELION. Methods in Enzymology, 2016, 579, 125-157.	1.0	502
18	An atomic structure of human γ-secretase. Nature, 2015, 525, 212-217.	27.8	490

#	Article	IF	CITATIONS
19	Structures of α-synuclein filaments from multiple system atrophy. Nature, 2020, 585, 464-469.	27.8	446
20	Helical reconstruction in RELION. Journal of Structural Biology, 2017, 198, 163-176.	2.8	438
21	XMIPP: a new generation of an open-source image processing package for electron microscopy. Journal of Structural Biology, 2004, 148, 194-204.	2.8	434
22	Characterisation of molecular motions in cryo-EM single-particle data by multi-body refinement in RELION. ELife, $2018, 7, .$	6.0	434
23	The structure of the human mitochondrial ribosome. Science, 2015, 348, 95-98.	12.6	432
24	Structure-based classification of tauopathies. Nature, 2021, 598, 359-363.	27.8	409
25	New tools for automated cryo-EM single-particle analysis in RELION-4.0. Biochemical Journal, 2021, 478, 4169-4185.	3.7	396
26	Structure of the rabbit ryanodine receptor RyR1 at near-atomic resolution. Nature, 2015, 517, 50-55.	27.8	391
27	Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization. Nature Methods, 2007, 4, 27-29.	19.0	387
28	Novel tau filament fold in corticobasal degeneration. Nature, 2020, 580, 283-287.	27.8	381
29	Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles. ELife, 2013, 2, e00461.	6.0	378
30	Unravelling biological macromolecules with cryo-electron microscopy. Nature, 2016, 537, 339-346.	27.8	352
31	Semi-automated selection of cryo-EM particles in RELION-1.3. Journal of Structural Biology, 2015, 189, 114-122.	2.8	346
32	Three-dimensional structure of human \hat{I}^3 -secretase. Nature, 2014, 512, 166-170.	27.8	317
33	Image processing for electron microscopy single-particle analysis using XMIPP. Nature Protocols, 2008, 3, 977-990.	12.0	310
34	Heparin-induced tau filaments are polymorphic and differ from those in Alzheimer's and Pick's diseases. ELife, 2019, 8, .	6.0	309
35	Structure of the Mammalian Ribosome-Sec61 Complex to 3.4ÂÃ Resolution. Cell, 2014, 157, 1632-1643.	28.9	302
36	Cryo-EM: A Unique Tool for the Visualization of Macromolecular Complexity. Molecular Cell, 2015, 58, 677-689.	9.7	300

#	Article	IF	Citations
37	Beam-induced motion correction for sub-megadalton cryo-EM particles. ELife, 2014, 3, e03665.	6.0	298
38	Cryo-EM structure of the Plasmodium falciparum 80S ribosome bound to the anti-protozoan drug emetine. ELife, $2014,3,.$	6.0	274
39	A pipeline approach to single-particle processing in <i>RELION</i> . Acta Crystallographica Section D: Structural Biology, 2017, 73, 496-502.	2.3	262
40	A thermostable, closed SARS-CoV-2 spike protein trimer. Nature Structural and Molecular Biology, 2020, 27, 934-941.	8.2	261
41	Structure of the large ribosomal subunit from human mitochondria. Science, 2014, 346, 718-722.	12.6	260
42	Tau filaments from multiple cases of sporadic and inherited Alzheimer's disease adopt a common fold. Acta Neuropathologica, 2018, 136, 699-708.	7.7	252
43	Maximum-likelihood Multi-reference Refinement for Electron Microscopy Images. Journal of Molecular Biology, 2005, 348, 139-149.	4.2	239
44	Cryo-EM structures of amyloid-Î ² 42 filaments from human brains. Science, 2022, 375, 167-172.	12.6	228
45	Cryo-EM structure of a 3D DNA-origami object. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20012-20017.	7.1	219
46	Resolving macromolecular structures from electron cryo-tomography data using subtomogram averaging in RELION. Nature Protocols, 2016 , 11 , 2054 - 2065 .	12.0	216
47	Initiation of Translation by Cricket Paralysis Virus IRES Requires Its Translocation in the Ribosome. Cell, 2014, 157, 823-831.	28.9	211
48	Atomic structure of the apoptosome: mechanism of cytochrome <i>c</i> - and dATP-mediated activation of Apaf-1. Genes and Development, 2015, 29, 2349-2361.	5.9	201
49	The architecture of the spliceosomal U4/U6.U5 tri-snRNP. Nature, 2015, 523, 47-52.	27.8	195
50	Advances in Single-Particle Electron Cryomicroscopy Structure Determination applied to Sub-tomogram Averaging. Structure, 2015, 23, 1743-1753.	3.3	189
51	Cryo-EM structure of the yeast U4/U6.U5 tri-snRNP at 3.7 Ã resolution. Nature, 2016, 530, 298-302.	27.8	184
52	Cryo-EM structures of tau filaments. Current Opinion in Structural Biology, 2020, 64, 17-25.	5.7	165
53	Structure of ratcheted ribosomes with tRNAs in hybrid states. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16924-16927.	7.1	161
54	Amyloid structure determination in <i>RELION</i> -3.1. Acta Crystallographica Section D: Structural Biology, 2020, 76, 94-101.	2.3	161

#	Article	IF	CITATIONS
55	Structure of the MacAB–TolC ABC-type tripartite multidrug efflux pump. Nature Microbiology, 2017, 2, 17070.	13.3	140
56	Cryo-EM structure of a neuronal functional amyloid implicated in memory persistence in <i>Drosophila</i> . Science, 2020, 367, 1230-1234.	12.6	140
57	Mefloquine targets the Plasmodium falciparum 80S ribosome to inhibit protein synthesis. Nature Microbiology, 2017, 2, 17031.	13.3	128
58	Assembly of recombinant tau into filaments identical to those of Alzheimer's disease and chronic traumatic encephalopathy. ELife, 2022, 11, .	6.0	121
59	Molecular Architecture of a Eukaryotic Translational Initiation Complex. Science, 2013, 342, 1240585.	12.6	120
60	Insights into the molecular architecture of the 26S proteasome. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11943-11947.	7.1	116
61	Structure of active dimeric human telomerase. Nature Structural and Molecular Biology, 2013, 20, 454-460.	8.2	115
62	Averaging of Electron Subtomograms and Random Conical Tilt Reconstructions through Likelihood Optimization. Structure, 2009, 17, 1563-1572.	3.3	112
63	Cryo-EM structures of tau filaments from Alzheimer's disease with PET ligand APN-1607. Acta Neuropathologica, 2021, 141, 697-708.	7.7	99
64	Mechanistic insights into caspase-9 activation by the structure of the apoptosome holoenzyme. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1542-1547.	7.1	95
65	Seeded assembly <i>inÂvitro</i> does not replicate the structures of αâ€synuclein filaments from multiple system atrophy. FEBS Open Bio, 2021, 11, 999-1013.	2.3	95
66	Design of a molecular support for cryo-EM structure determination. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7456-E7463.	7.1	93
67	Age-dependent formation of TMEM106B amyloid filaments in human brains. Nature, 2022, 605, 310-314.	27.8	88
68	The structure of CCT–Hsc70NBD suggests a mechanism for Hsp70 delivery of substrates to the chaperonin. Nature Structural and Molecular Biology, 2008, 15, 858-864.	8.2	85
69	Classification of Structural Heterogeneity by Maximum-Likelihood Methods. Methods in Enzymology, 2010, 482, 295-320.	1.0	84
70	Collaborative Computational Project for Electron cryo-Microscopy. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 123-126.	2.5	84
71	Structure of hibernating ribosomes studied by cryoelectron tomography in vitro and in situ. Journal of Cell Biology, 2010, 190, 613-621.	5. 2	83
72	Structure of the Fanconi anaemia monoubiquitin ligase complex. Nature, 2019, 575, 234-237.	27.8	80

#	Article	IF	CITATIONS
73	cryo-EM structures of the E. coli replicative DNA polymerase reveal its dynamic interactions with the DNA sliding clamp, exonuclease and \ddot{l}_{m} . ELife, 2015, 4, .	6.0	7 5
74	Modeling Experimental Image Formation for Likelihood-Based Classification of Electron Microscopy Data. Structure, 2007, 15, 1167-1177.	3.3	68
75	An Introduction to Maximum-Likelihood Methods in Cryo-EM. Methods in Enzymology, 2010, 482, 263-294.	1.0	65
76	Electron microscopy studies on the quaternary structure of p53 reveal different binding modes for p53 tetramers in complex with DNA. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 557-562.	7.1	65
77	Cryo-EM structure of a metazoan separase–securin complex at near-atomic resolution. Nature Structural and Molecular Biology, 2017, 24, 414-418.	8.2	65
78	Structure and Uncoating of Immature Adenovirus. Journal of Molecular Biology, 2009, 392, 547-557.	4.2	64
79	Maximum likelihood based classification of electron tomographic data. Journal of Structural Biology, 2011, 173, 77-85.	2.8	56
80	Cryo-EM of dynein microtubule-binding domains shows how an axonemal dynein distorts the microtubule. ELife, $2019, 8, .$	6.0	56
81	Structure of the apoptosome: mechanistic insights into activation of an initiator caspase from <i>Drosophila</i> . Genes and Development, 2015, 29, 277-287.	5.9	55
82	Fast maximum-likelihood refinement of electron microscopy images. Bioinformatics, 2005, 21, ii243-ii244.	4.1	54
83	Quasi-Atomic Model of Bacteriophage T7 Procapsid Shell: Insights into the Structure and Evolution of a Basic Fold. Structure, 2007, 15, 461-472.	3.3	54
84	Distinct Conformers of Assembled Tau in Alzheimer's and Pick's Diseases. Cold Spring Harbor Symposia on Quantitative Biology, 2018, 83, 163-171.	1.1	53
85	Data management challenges in three-dimensional EM. Nature Structural and Molecular Biology, 2012, 19, 1203-1207.	8.2	49
86	CryoEM structure of MxB reveals a novel oligomerization interface critical for HIV restriction. Science Advances, 2017, 3, e1701264.	10.3	47
87	Revealing the structures of megadalton-scale DNA complexes with nucleotide resolution. Nature Communications, 2020, 11, 6229.	12.8	43
88	Self-correcting mismatches during high-fidelity DNA replication. Nature Structural and Molecular Biology, 2017, 24, 140-143.	8.2	42
89	Conformational Rearrangements of SV40 Large T Antigen during Early Replication Events. Journal of Molecular Biology, 2010, 397, 1276-1286.	4.2	40
90	Multi-body Refinement of Cryo-EM Images in RELION. Methods in Molecular Biology, 2021, 2215, 145-160.	0.9	39

#	Article	IF	CITATIONS
91	tmRNA·SmpB complex mimics native aminoacyl-tRNAs in the A site of stalled ribosomes. Journal of Structural Biology, 2010, 169, 342-348.	2.8	34
92	Maximum likelihood refinement of electron microscopy data with normalization errors. Journal of Structural Biology, 2009, 166, 234-240.	2.8	33
93	Atomic Structure of Type VI Contractile Sheath from Pseudomonas aeruginosa. Structure, 2018, 26, 329-336.e3.	3.3	29
94	The structural basis of proton driven zinc transport by ZntB. Nature Communications, 2017, 8, 1313.	12.8	27
95	SPI-EM: Towards a Tool For Predicting CATH Superfamilies in 3D-EM Maps. Journal of Molecular Biology, 2005, 345, 759-771.	4.2	25
96	Electron microscopy of Xrcc4 and the DNA ligase IV–Xrcc4 DNA repair complex. DNA Repair, 2009, 8, 1380-1389.	2.8	24
97	Subunit Positioning and Stator Filament Stiffness in Regulation and Power Transmission in the V1 Motor of the Manduca sexta V-ATPase. Journal of Molecular Biology, 2014, 426, 286-300.	4.2	24
98	X-ray and cryo-EM structures of monomeric and filamentous actin-like protein MamK reveal changes associated with polymerization. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13396-13401.	7.1	24
99	CryoEM structures of spliceosomal complexes reveal the molecular mechanism of pre-mRNA splicing. Current Opinion in Structural Biology, 2017, 46, 130-139.	5.7	22
100	Classification of single-projection reconstructions for cryo-electron microscopy data of icosahedral viruses. Journal of Structural Biology, 2005, 151, 79-91.	2.8	20
101	Exploiting prior knowledge about biological macromolecules in cryo-EM structure determination. IUCrJ, 2021, 8, 60-75.	2.2	14
102	Optimization problems in electron microscopy of single particles. Annals of Operations Research, 2006, 148, 133-165.	4.1	12
103	Visualizing molecular machines in action. Advances in Protein Chemistry and Structural Biology, 2010, 81, 89-119.	2.3	8
104	Tau Protein and Frontotemporal Dementias. Advances in Experimental Medicine and Biology, 2021, 1281, 177-199.	1.6	8
105	Introducing robustness to maximum-likelihood refinement of electron-microsopy data. Acta Crystallographica Section D: Biological Crystallography, 2009, 65, 672-678.	2.5	6
106	Ab initiostructure determination of low-molecular-weight compounds using synchrotron radiation Laue diffraction. Journal of Synchrotron Radiation, 1999, 6, 19-28.	2.4	4
107	Grid Computing in 3D-EM Image Processing Using Xmipp. , 0, , .		3
108	[ECâ€03–02]: CRYOâ€EM STRUCTURES OF TAU FILAMENTS FROM ALZHEIMER'S DISEASE BRAIN. Alzheimer's a Dementia, 2017, 13, P892.	and 0.8	3

#	Article	IF	CITATIONS
109	The potentials of conditional optimization in phasing and model building of protein crystal structures. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 2202-2209.	2.5	2
110	Conditional optimization: a new formalism for protein structure refinement. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 1820-1828.	2.5	1
111	Development of a force field for conditional optimization of protein structures. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 438-446.	2.5	1
112	A Bayesian view on cryo-EM structure determination., 2012,,.		1
113	Structure of the Yeast Mitochondrial Large Ribosomal Subunit. Microscopy and Microanalysis, 2014, 20, 1252-1253.	0.4	1
114	Sub-tomogram Averaging in RELION. Microscopy and Microanalysis, 2016, 22, 1124-1125.	0.4	1
115	ECâ€01â€02: Structure of Γâ€6ecretases and Implications for Drug Development. Alzheimer's and Dementia, 2016, 12, P161.	0.8	0
116	CryoEM structure of dynamin-like MxB in assembly. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, a54-a54.	0.1	0