Kylie R Dunning

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2615965/kylie-r-dunning-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

42 1,882 22 43 g-index

48 2,260 4 4.84 ext. papers ext. citations avg, IF L-index

#	Paper Paper	IF	Citations
42	Non-invasive, label-free optical analysis to detect aneuploidy within the inner cell mass of the preimplantation embryo. <i>Human Reproduction</i> , 2021 ,	5.7	2
41	Dysregulation of bisphosphoglycerate mutase during in vitro maturation of oocytes. <i>Journal of Assisted Reproduction and Genetics</i> , 2021 , 38, 1363-1372	3.4	0
40	Effect of oxygen and glucose availability during in vitro maturation of bovine oocytes on development and gene expression. <i>Journal of Assisted Reproduction and Genetics</i> , 2021 , 38, 1349-1362	3.4	2
39	Metabolic co-dependence of the oocyte and cumulus cells: essential role in determining oocyte developmental competence. <i>Human Reproduction Update</i> , 2021 , 27, 27-47	15.8	30
38	Optical imaging of cleavage stage bovine embryos using hyperspectral and confocal approaches reveals metabolic differences between on-time and fast-developing embryos. <i>Theriogenology</i> , 2021 , 159, 60-68	2.8	5
37	HYPOXIA AND REPRODUCTIVE HEALTH: Hypoxia and ovarian function: follicle development, ovulation, oocyte maturation. <i>Reproduction</i> , 2021 , 161, F33-F40	3.8	5
36	Does artificial intelligence have a role in the IVF clinic?. <i>Reproduction and Fertility</i> , 2021 , 2, C29-C34	1.1	O
35	Oocyte and embryo evaluation by AI and multi-spectral auto-fluorescence imaging: Livestock embryology needs to catch-up to clinical practice. <i>Theriogenology</i> , 2020 , 150, 255-262	2.8	6
34	Optical manipulation: a step change for biomedical science. <i>Contemporary Physics</i> , 2020 , 61, 277-294	3.3	2
33	A biophotonic approach to measure pH in small volumes in vitro: Quantifiable differences in metabolic flux around the cumulus-oocyte-complex (COC). <i>Journal of Biophotonics</i> , 2020 , 13, e2019600.	3 8 .1	3
32	A Bimane-Based Peptide Staple for Combined Helical Induction and Fluorescent Imaging. <i>ChemBioChem</i> , 2020 , 21, 3423-3432	3.8	2
31	Hemoglobin: potential roles in the oocyte and early embryo□ <i>Biology of Reproduction</i> , 2019 , 101, 262-27	0 3.9	4
30	It takes a community to conceive: an analysis of the scope, nature and accuracy of online sources of health information for couples trying to conceive. <i>Reproductive Biomedicine and Society Online</i> , 2019 , 9, 48-63	1.2	6
29	Haemoglobin expression in in vivo murine preimplantation embryos suggests a role in oxygen-regulated gene expression. <i>Reproduction, Fertility and Development</i> , 2019 , 31, 724-734	1.8	3
28	Fifty years of reproductive biology in Australia: highlights from the 50th Annual Meeting of the Society for Reproductive Biology (SRB). <i>Reproduction, Fertility and Development</i> , 2019 , 31, 829-836	1.8	
27	Janus kinase JAK1 maintains the ovarian reserve of primordial follicles in the mouse ovary. <i>Molecular Human Reproduction</i> , 2018 , 24, 533-542	4.4	11
26	Failure to launch: aberrant cumulus gene expression during oocyte in vitro maturation. <i>Reproduction</i> , 2017 , 153, R109-R120	3.8	29

(2010-2017)

The role of l-carnitine during oocyte in vitro maturation: essential co-factor?. <i>Animal Reproduction</i> , 2017 , 14, 469-475	1.7	5
Activation of Mouse Cumulus-Oocyte Complex Maturation In Vitro Through EGF-Like Activity of Versican. <i>Biology of Reproduction</i> , 2015 , 92, 116	3.9	22
ADAMTS proteases in fertility. <i>Matrix Biology</i> , 2015 , 44-46, 54-63	11.4	36
Glioma-derived versican promotes tumor expansion via glioma-associated microglial/macrophages Toll-like receptor 2 signaling. <i>Neuro-Oncology</i> , 2015 , 17, 200-10	1	98
Lipids and oocyte developmental competence: the role of fatty acids and <code>bxidation</code> . <i>Reproduction</i> , 2014 , 148, R15-27	3.8	201
Identification of sites of STAT3 action in the female reproductive tract through conditional gene deletion. <i>PLoS ONE</i> , 2014 , 9, e101182	3.7	19
Regulation of fatty acid oxidation in mouse cumulus-oocyte complexes during maturation and modulation by PPAR agonists. <i>PLoS ONE</i> , 2014 , 9, e87327	3.7	91
Promoting lipid utilization with l-carnitine to improve oocyte quality. <i>Animal Reproduction Science</i> , 2012 , 134, 69-75	2.1	53
Heparan sulfate proteoglycans regulate responses to oocyte paracrine signals in ovarian follicle morphogenesis. <i>Endocrinology</i> , 2012 , 153, 4544-55	4.8	44
Utilization of endogenous fatty acid stores for energy production in bovine preimplantation embryos. <i>Theriogenology</i> , 2012 , 77, 1632-41	2.8	68
Molecular filtration properties of the mouse expanded cumulus matrix: controlled supply of metabolites and extracellular signals to cumulus cells and the oocyte. <i>Biology of Reproduction</i> , 2012 , 87, 89	3.9	17
Transient invasive migration in mouse cumulus oocyte complexes induced at ovulation by luteinizing hormone. <i>Biology of Reproduction</i> , 2012 , 86, 125	3.9	25
Human cumulus cell gene expression as a biomarker of pregnancy outcome after single embryo transfer. <i>Fertility and Sterility</i> , 2011 , 96, 47-52.e2	4.8	125
Increased beta-oxidation and improved oocyte developmental competence in response to l-carnitine during ovarian in vitro follicle development in mice. <i>Biology of Reproduction</i> , 2011 , 85, 548-5	5 ^{3.9}	75
Beta-oxidation is essential for mouse oocyte developmental competence and early embryo development. <i>Biology of Reproduction</i> , 2010 , 83, 909-18	3.9	255
ADAMTS1 cleavage of versican mediates essential structural remodeling of the ovarian follicle and cumulus-oocyte matrix during ovulation in mice. <i>Biology of Reproduction</i> , 2010 , 83, 549-57	3.9	106
High-fat diet causes lipotoxicity responses in cumulus-oocyte complexes and decreased fertilization rates. <i>Endocrinology</i> , 2010 , 151, 5438-45	4.8	228
Identification of perilipin-2 as a lipid droplet protein regulated in oocytes during maturation. Reproduction, Fertility and Development, 2010 , 22, 1262-71	1.8	42
	Activation of Mouse Cumulus-Oocyte Complex Maturation In Vitro Through EGF-Like Activity of Versican. Biology of Reproduction, 2015, 92, 116 ADAMTS proteases in fertility. Matrix Biology, 2015, 44-46, 54-63 Glioma-derived versican promotes tumor expansion via glioma-associated microglial/macrophages Toll-like receptor 2 signaling. Neuro-Oncology, 2015, 17, 200-10 Lipids and oocyte developmental competence: the role of fatty acids and @xidation. Reproduction, 2014, 148, R15-27 Identification of sites of STAT3 action in the female reproductive tract through conditional gene deletion. PLoS ONE, 2014, 9, e101182 Regulation of fatty acid oxidation in mouse cumulus-oocyte complexes during maturation and modulation by PPAR agonists. PLoS ONE, 2014, 9, e87327 Promoting lipid utilization with I-carnitine to improve oocyte quality. Animal Reproduction Science, 2012, 134, 69-75 Heparan sulfate proteoglycans regulate responses to oocyte paracrine signals in ovarian follicle morphogenesis. Endocrinology, 2012, 153, 4544-55 Utilization of endogenous fatty acid stores for energy production in bovine preimplantation embryos. Theriogenology, 2012, 77, 1632-41 Molecular filtration properties of the mouse expanded cumulus matrix: controlled supply of metabolities and extracellular signals to cumulus cells and the oocyte. Biology of Reproduction, 2012, 87, 89 Transient invasive migration in mouse cumulus oocyte complexes induced at ovulation by luteinizing hormone. Biology of Reproduction, 2012, 86, 125 Human cumulus cell gene expression as a biomarker of pregnancy outcome after single embryo transfer. Fertility and Sterility, 2011, 96, 47-52.e2 Increased beta-oxidation and improved oocyte developmental competence in response to I-carnitine during ovarian in vitro follicle development in mice. Biology of Reproduction, 2011, 85, 548-5 Beta-oxidation is essential for mouse oocyte developmental competence and early embryo development. Biology of Reproduction, 2010, 83, 909-18 ADAMTS1 cleavage of versican mediatese essen	2017, 14, 469-475 Activation of Mouse Cumulus-Oocyte Complex Maturation In Vitro Through EGF-Like Activity of Versican. Biology of Reproduction, 2015, 92, 116 ADAMTS proteases in fertility. Matrix Biology, 2015, 44-46, 54-63 11.4 Glioma-derived versican promotes tumor expansion via glioma-associated microglial/macrophages 1 Toll-like receptor 2 signaling. Neuro-Oncology, 2015, 17, 200-10 Lipids and oocyte developmental competence: the role of fatty acids and fioxidation. Reproduction, 2014, 148, R15-27 Identification of sites of STAT3 action in the female reproductive tract through conditional gene deletion. PLoS ONE, 2014, 9, e101182 Regulation of fatty acid oxidation in mouse cumulus-oocyte complexes during maturation and modulation by PPAR agonists. PLoS ONE, 2014, 9, e87327 Promoting lipid utilization with L-carnitine to improve oocyte quality. Animal Reproduction Science, 2012, 134, 69-75 Heparan sulfate proteoglycans regulate responses to oocyte paracrine signals in ovarian follicle morphogenesis. Endocrinology, 2012, 153, 4544-55 Utilization of endogenous fatty acid stores for energy production in bovine preimplantation embryos. Theriogenology, 2012, 77, 1632-41 Molecular filtration properties of the mouse expanded cumulus matrix: controlled supply of metabolities and extracellular signals to cumulus cells and the oocyte. Biology of Reproduction, 2012, 83, 89 Transient invasive migration in mouse cumulus oocyte complexes induced at ovulation by luteinizing hormone. Biology of Reproduction, 2012, 86, 125 Human cumulus cell gene expression as a biomarker of pregnancy outcome after single embryo transfer. Fertility and sterility, 2011, 96, 47-52.e2 Human cumulus cell gene expression as a biomarker of pregnancy outcome after single embryo transfer. Fertility and sterility, 2011, 96, 47-52.e2 High-fat diet causes lipotoxicity responses in cumulus-oocyte complexes and decreased het-oxidation is essential for mouse oocyte developmental competence in response to t-carnitine during ovarian in vitro

7	Gene delivery to airway epithelial cells in vivo: a direct comparison of apical and basolateral transduction strategies using pseudotyped lentivirus vectors. <i>Journal of Gene Medicine</i> , 2007 , 9, 362-8	3.5	56	
6	Lentiviral-mediated gene correction of mucopolysaccharidosis type IIIA. <i>Genetic Vaccines and Therapy</i> , 2007 , 5, 1		22	
5	Altered composition of the cumulus-oocyte complex matrix during in vitro maturation of oocytes. <i>Human Reproduction</i> , 2007 , 22, 2842-50	5.7	54	
4	Requirement for ADAMTS-1 in extracellular matrix remodeling during ovarian folliculogenesis and lymphangiogenesis. <i>Developmental Biology</i> , 2006 , 300, 699-709	3.1	91	
3	Codon-optimized reading frames facilitate high-level expression of the HIV-1 minor proteins. <i>Molecular Biotechnology</i> , 2005 , 31, 85-8	3	5	
2	Characterization of the MEK5-ERK5 module in human neutrophils and its relationship to ERK1/ERK2 in the chemotactic response. <i>Journal of Biological Chemistry</i> , 2004 , 279, 49825-34	5.4	31	
1	A Silk-Based Functionalization Architecture for Single Fiber Imaging and Sensing. <i>Advanced Functional Materials</i> , 2010713	15.6	3	