Sang-Il Choi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2615638/publications.pdf Version: 2024-02-01

SANC-LI CHOL

#	Article	IF	CITATIONS
1	Efficient Deep Learning Network With Multi-Streams for Android Malware Family Classification. IEEE Access, 2022, 10, 5518-5532.	4.2	12
2	Explainable gait recognition with prototyping encoder–decoder. PLoS ONE, 2022, 17, e0264783.	2.5	0
3	Open Set User Identification Using Gait Pattern Analysis Based on Ensemble Deep Neural Network. IEEE Sensors Journal, 2022, 22, 16975-16984.	4.7	2
4	An Automated Framework Based on Deep Learning for Shark Recognition. Journal of Marine Science and Engineering, 2022, 10, 942.	2.6	3
5	Robust Classification of Largely Corrupted Electronic Nose Data Using Deep Neural Networks. IEEE Sensors Journal, 2021, 21, 5052-5059.	4.7	18
6	Method for Diagnosing the Bone Marrow Edema of Sacroiliac Joint in Patients with Axial Spondyloarthritis Using Magnetic Resonance Image Analysis Based on Deep Learning. Diagnostics, 2021, 11, 1156.	2.6	20
7	Reliability of Machine and Human Examiners for Detection of Laryngeal Penetration or Aspiration in Videofluoroscopic Swallowing Studies. Journal of Clinical Medicine, 2021, 10, 2681.	2.4	3
8	Hyoid Bone Tracking in a Videofluoroscopic Swallowing Study Using a Deep-Learning-Based Segmentation Network. Diagnostics, 2021, 11, 1147.	2.6	10
9	Ensemble Learning Using Pressure Sensor for Gait Recognition. , 2021, , .		2
10	Road Traffic Monitoring from UAV Images Using Deep Learning Networks. Remote Sensing, 2021, 13, 4027.	4.0	23
11	Multi-Target Tracking With Multiple 2D Range Scanners. IEEE Access, 2020, 8, 99990-99998.	4.2	4
12	Automatic Detection of Airway Invasion from Videofluoroscopy via Deep Learning Technology. Applied Sciences (Switzerland), 2020, 10, 6179.	2.5	10
13	Training Set Enlargement Using Binary Weighted Interpolation Maps for the Single Sample per Person Problem in Face Recognition. Applied Sciences (Switzerland), 2020, 10, 6659.	2.5	1
14	Can Ensemble Deep Learning Identify People by Their Gait Using Data Collected from Multi-Modal Sensors in Their Insole?. Sensors, 2020, 20, 4001.	3.8	8
15	Data Restoration by Linear Estimation of the Principal Components From Lossy Data. IEEE Access, 2020, 8, 172244-172251.	4.2	2
16	Multimodal Few-Shot Learning for Gait Recognition. Applied Sciences (Switzerland), 2020, 10, 7619.	2.5	9
17	User Identification from Gait Analysis Using Multi-Modal Sensors in Smart Insole. Sensors, 2019, 19, 3785.	3.8	22
18	Detection of interacting groups based on geometric and social relations between individuals in an image. Pattern Recognition, 2019, 93, 498-506.	8.1	7

Sang-Il Choi

#	Article	IF	CITATIONS
19	Classification of Gait Type Based on Deep Learning Using Various Sensors with Smart Insole. Sensors, 2019, 19, 1757.	3.8	57
20	Face Recognition in SSPP Problem Using Face Relighting Based on Coupled Bilinear Model. Sensors, 2019, 19, 43.	3.8	8
21	Face Recognition Using Composite Features Based on Discriminant Analysis. IEEE Access, 2018, 6, 13663-13670.	4.2	12
22	Gait Type Classification Using Smart Insole Sensors. , 2018, , .		3
23	DIR-ST ² : Delineation of Imprecise Regions Using Spatio–Temporal–Textual Information. IEEE Access, 2018, 6, 36364-36375.	4.2	1
24	Data reconstruction using iteratively reweighted L1-principal component analysis for an electronic nose system. PLoS ONE, 2018, 13, e0200605.	2.5	6
25	Classification of Three Types of Walking Activities Regarding Stairs Using Plantar Pressure Sensors. IEEE Sensors Journal, 2017, 17, 2638-2639.	4.7	44
26	Data Reconstruction Using Subspace Analysis for Gas Classification. IEEE Sensors Journal, 2017, 17, 5954-5962.	4.7	10
27	Gas Classification Using Combined Features Based on a Discriminant Analysis for an Electronic Nose. Journal of Sensors, 2016, 2016, 1-9.	1.1	9
28	Combined features for face recognition under illumination variation. Electronics Letters, 2016, 52, 31-33.	1.0	4
29	Pseudo Optimization of E-Nose Data Using Region Selection with Feature Feedback Based on Regularized Linear Discriminant Analysis. Sensors, 2015, 15, 656-671.	3.8	1
30	Continuous media fingerprinting against time-varying collusion attacks. Information Sciences, 2015, 298, 66-79.	6.9	3
31	Confidence Measure Using Composite Features for Eye Detection in a Face Recognition System. IEEE Signal Processing Letters, 2015, 22, 225-228.	3.6	4
32	A Memory-Efficient Deterministic Finite Automaton-Based Bit-Split String Matching Scheme Using Pattern Uniqueness in Deep Packet Inspection. PLoS ONE, 2015, 10, e0126517.	2.5	7
33	Image Generation Using Bidirectional Integral Features for Face Recognition with a Single Sample per Person. PLoS ONE, 2015, 10, e0138859.	2.5	5
34	Construction of Composite Feature Vector Based on Discriminant Analysis for Face Recognition. Journal of Korea Multimedia Society, 2015, 18, 834-842.	0.2	4
35	A Discriminant Distance Based Composite Vector Selection Method for Odor Classification. Sensors, 2014, 14, 6938-6951.	3.8	8
36	Composite vector selection for feature extraction in face recognition. Electronics Letters, 2013, 49, 104-106.	1.0	3

SANG-IL CHOI

#	Article	IF	CITATIONS
37	Time Horizon Selection Using Feature Feedback for the Implementation of an E-Nose System. IEEE Sensors Journal, 2013, 13, 1575-1581.	4.7	3
38	Performance evaluation of face recognition using feature feedback over a number of Fisherfaces. IEEJ Transactions on Electrical and Electronic Engineering, 2013, 8, 541-545.	1.4	1
39	Classification of Odorants in the Vapor Phase Using Composite Features for a Portable E-Nose System. Sensors, 2012, 12, 16182-16193.	3.8	11
40	Input variable selection for feature extraction in classification problems. Signal Processing, 2012, 92, 636-648.	3.7	29
41	Pixel selection based on discriminant features with application to face recognition. Pattern Recognition Letters, 2012, 33, 1083-1092.	4.2	17
42	Face recognition based on 2D images under illumination and pose variations. Pattern Recognition Letters, 2011, 32, 561-571.	4.2	34
43	Pattern recognition using feature feedback: Application to face recognition. International Journal of Control, Automation and Systems, 2010, 8, 141-148.	2.7	16
44	Data Refinement and Channel Selection for a Portable E-Nose System by the Use of Feature Feedback. Sensors, 2010, 10, 10387-10400.	3.8	16
45	Pixel selection in a face image based on discriminant features for face recognition. , 2008, , .		11
46	An Effective Face Recognition under Illumination and Pose Variations. Neural Networks (IJCNN), International Joint Conference on, 2007, , .	0.0	5