Bin Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2615594/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Graphene Nanosheet/Ni ²⁺ /Al ³⁺ Layered Double-Hydroxide Composite as a Novel Electrode for a Supercapacitor. Chemistry of Materials, 2011, 23, 3509-3516.	3.2	506
2	Green synthesis of graphene nanosheets/ZnO composites and electrochemical properties. Journal of Solid State Chemistry, 2011, 184, 1421-1427.	1.4	248
3	Hydrothermal synthesis of carbon nanotube/cubic Fe3O4 nanocomposite for enhanced performance supercapacitor electrode material. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013, 178, 736-743.	1.7	179
4	Synthesis of reduced graphene nanosheet/urchin-like manganese dioxide composite and high performance as supercapacitor electrode. Electrochimica Acta, 2012, 69, 112-119.	2.6	142
5	Electrochemical synthesis of layer-by-layer reduced graphene oxide sheets/polyaniline nanofibers composite and its electrochemical performance. Electrochimica Acta, 2013, 91, 185-194.	2.6	137
6	Two steps in situ structure fabrication of Ni–Al layered double hydroxide on Ni foam and its electrochemical performance for supercapacitors. Journal of Power Sources, 2014, 246, 747-753.	4.0	134
7	A New Partially Reduced Graphene Oxide Nanosheet/Polyaniline Nanowafer Hybrid as Supercapacitor Electrode Material. Energy & Fuels, 2013, 27, 568-575.	2.5	132
8	Effects of solvent on the morphology of nanostructured Co3O4 and its application for high-performance supercapacitors. Electrochimica Acta, 2013, 112, 378-385.	2.6	107
9	Graphene homogeneously anchored with Ni(OH)2 nanoparticles as advanced supercapacitor electrodes. CrystEngComm, 2013, 15, 10007.	1.3	99
10	Facile synthesis of exfoliated Co–Al LDH–carbon nanotube composites with high performance as supercapacitor electrodes. Physical Chemistry Chemical Physics, 2014, 16, 17936-17942.	1.3	92
11	Optimizing the charge transfer process by designing Co ₃ O ₄ @PPy@MnO ₂ ternary core–shell composite. Journal of Materials Chemistry A, 2014, 2, 12968-12973.	5.2	84
12	Graphene-enhanced electrodes for scalable supercapacitors. Electrochimica Acta, 2017, 257, 372-379.	2.6	71
13	Hydrothermal synthesis of reduced graphene sheets/Fe2O3 nanorods composites and their enhanced electrochemical performance for supercapacitors. Solid State Sciences, 2013, 20, 46-53.	1.5	68
14	In situ Electron paramagnetic resonance spectroelectrochemical study of graphene-based supercapacitors: Comparison between chemically reduced graphene oxide and nitrogen-doped reduced graphene oxide. Carbon, 2020, 160, 236-246.	5.4	49
15	Electrochemical reduction approach-based 3D graphene/Ni(OH) 2 electrode for high-performance supercapacitors. Electrochimica Acta, 2015, 154, 9-16.	2.6	46
16	Composite of hierarchical interpenetrating 3D hollow carbon skeleton from lotus pollen and hexagonal MnO ₂ nanosheets for high-performance supercapacitors. Journal of Materials Chemistry A, 2015, 3, 9754-9762.	5.2	45
17	Preparation of graphene nanosheets/SnO2 composites by pre-reduction followed by in-situ reduction and their electrochemical performances. Materials Chemistry and Physics, 2013, 141, 1-8.	2.0	39
18	Deft dipping combined with electrochemical reduction to obtain 3D electrochemical reduction graphene oxide and its applications in supercapacitors. Journal of Materials Chemistry A, 2014, 2, 1137-1143.	5.2	35

BIN WANG

#	Article	IF	CITATIONS
19	Electron Paramagnetic Resonance as a Structural Tool to Study Graphene Oxide: Potential Dependence of the EPR Response. Journal of Physical Chemistry C, 2019, 123, 22556-22563.	1.5	26
20	<i>In situ</i> electrochemical electron paramagnetic resonance spectroscopy as a tool to probe electrical double layer capacitance. Chemical Communications, 2018, 54, 3827-3830.	2.2	22
21	Nitrogen doped carbon nanowires prepared from polypyrrole nanowires for potential application in supercapacitors. Journal of Electroanalytical Chemistry, 2016, 775, 219-227.	1.9	18
22	Effect of reducing system on capacitive behavior of reduced graphene oxide film: Application for supercapacitor. Journal of Solid State Chemistry, 2015, 221, 338-344.	1.4	12