List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2615576/publications.pdf Version: 2024-02-01

296 papers	24,214 citations	7069 78 h-index	10708 138 g-index
312	312	312	14190
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Physiological, Biochemical, and Molecular Mechanisms of Heat Stress Tolerance in Plants. International Journal of Molecular Sciences, 2013, 14, 9643-9684.	1.8	1,470
2	Reactive Oxygen Species and Antioxidant Defense in Plants under Abiotic Stress: Revisiting the Crucial Role of a Universal Defense Regulator. Antioxidants, 2020, 9, 681.	2.2	1,288
3	Regulation of Ascorbate-Glutathione Pathway in Mitigating Oxidative Damage in Plants under Abiotic Stress. Antioxidants, 2019, 8, 384.	2.2	586
4	Molecular Mechanism of Heavy Metal Toxicity and Tolerance in Plants: Central Role of Glutathione in Detoxification of Reactive Oxygen Species and Methylglyoxal and in Heavy Metal Chelation. Journal of Botany, 2012, 2012, 1-37.	1.2	560
5	Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging. Frontiers in Plant Science, 2015, 6, 420.	1.7	552
6	Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiology and Molecular Biology of Plants, 2017, 23, 249-268.	1.4	495
7	Abiotic Stress and Reactive Oxygen Species: Generation, Signaling, and Defense Mechanisms. Antioxidants, 2021, 10, 277.	2.2	449
8	Potassium: A Vital Regulator of Plant Responses and Tolerance to Abiotic Stresses. Agronomy, 2018, 8, 31.	1.3	408
9	Glutathione and glutathione reductase: A boon in disguise for plant abiotic stress defense operations. Plant Physiology and Biochemistry, 2013, 70, 204-212.	2.8	404
10	Plant Response and Tolerance to Abiotic Oxidative Stress: Antioxidant Defense Is a Key Factor. , 2012, , 261-315.		378
11	Nitric oxide modulates antioxidant defense and the methylglyoxal detoxification system and reduces salinity-induced damage of wheat seedlings. Plant Biotechnology Reports, 2011, 5, 353-365.	0.9	366
12	Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: Phytohormones, mineral nutrients and transgenics. Plant Physiology and Biochemistry, 2017, 115, 126-140.	2.8	337
13	Up-regulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer tolerance to cadmium stress. Physiology and Molecular Biology of Plants, 2010, 16, 259-272.	1.4	327
14	Selenium Pretreatment Upregulates the Antioxidant Defense and Methylglyoxal Detoxification System and Confers Enhanced Tolerance to Drought Stress in Rapeseed Seedlings. Biological Trace Element Research, 2011, 143, 1758-1776.	1.9	319
15	Polyamine and nitric oxide crosstalk: Antagonistic effects on cadmium toxicity in mung bean plants through upregulating the metal detoxification, antioxidant defense and methylglyoxal detoxification systems. Ecotoxicology and Environmental Safety, 2016, 126, 245-255.	2.9	292
16	Potential Use of Halophytes to Remediate Saline Soils. BioMed Research International, 2014, 2014, 1-12.	0.9	257
17	Selenium-Induced Up-Regulation of the Antioxidant Defense and Methylglyoxal Detoxification System Reduces Salinity-Induced Damage in Rapeseed Seedlings. Biological Trace Element Research, 2011, 143, 1704-1721.	1.9	252
18	Plant Response to Salt Stress and Role of Exogenous Protectants to Mitigate Salt-Induced Damages. , 2013, , 25-87.		250

#	Article	IF	CITATIONS
19	Catalase and ascorbate peroxidase—representative H2O2-detoxifying heme enzymes in plants. Environmental Science and Pollution Research, 2016, 23, 19002-19029.	2.7	248
20	Exogenous sodium nitroprusside alleviates arsenic-induced oxidative stress in wheat (Triticum) Tj ETQq0 0 584-596.	0 rgBT /Overlock 1.1	10 Tf 50 70 247
21	Superoxide dismutase—mentor of abiotic stress tolerance in crop plants. Environmental Science and Pollution Research, 2015, 22, 10375-10394.	2.7	247
22	Hydrogen sulfide modulates cadmium-induced physiological and biochemical responses to alleviate cadmium toxicity in rice. Scientific Reports, 2015, 5, 14078.	1.6	243
23	Exogenous Proline and Glycine Betaine Mediated Upregulation of Antioxidant Defense and Glyoxalase Systems Provides Better Protection against Salt-Induced Oxidative Stress in Two Rice (<i>Oryza) Tj ETQq1</i>	1 0.784 31 4 rgBT	- /Øverlock 1
24	Osmoregulation and its actions during the drought stress in plants. Physiologia Plantarum, 2021, 172, 1321-1335.	2.6	234
25	Salicylic acid alleviates copper toxicity in rice (Oryza sativa L.) seedlings by up-regulating antioxidative and glyoxalase systems. Ecotoxicology, 2013, 22, 959-973.	1.1	228
26	Importance of nitric oxide in cadmium stress tolerance in crop plants. Plant Physiology and Biochemistry, 2013, 63, 254-261.	2.8	228
27	Application of Floating Aquatic Plants in Phytoremediation of Heavy Metals Polluted Water: A Review. Sustainability, 2020, 12, 1927.	1.6	217
28	Exogenous Selenium Pretreatment Protects Rapeseed Seedlings from Cadmium-Induced Oxidative Stress by Upregulating Antioxidant Defense and Methylglyoxal Detoxification Systems. Biological Trace Element Research, 2012, 149, 248-261.	1.9	215
29	Exogenous glutathione confers high temperature stress tolerance in mung bean (Vigna radiata L.) by modulating antioxidant defense and methylglyoxal detoxification system. Environmental and Experimental Botany, 2015, 112, 44-54.	2.0	205
30	Regulation of ROS Metabolism in Plants under Environmental Stress: A Review of Recent Experimental Evidence. International Journal of Molecular Sciences, 2020, 21, 8695.	1.8	202
31	Hydrogen Sulfide Regulates Salt Tolerance in Rice by Maintaining Na+/K+ Balance, Mineral Homeostasis and Oxidative Metabolism Under Excessive Salt Stress. Frontiers in Plant Science, 2015, 6, 1055.	1.7	201
32	Coordinated Actions of Glyoxalase and Antioxidant Defense Systems in Conferring Abiotic Stress Tolerance in Plants. International Journal of Molecular Sciences, 2017, 18, 200.	1.8	199
33	Regulation of Reactive Oxygen Species and Antioxidant Defense in Plants under Salinity. International Journal of Molecular Sciences, 2021, 22, 9326.	1.8	187
34	Methylglyoxal: An Emerging Signaling Molecule in Plant Abiotic Stress Responses and Tolerance. Frontiers in Plant Science, 2016, 7, 1341.	1.7	185
35	Nitric oxide-induced saltÂstress tolerance in plants: ROS metabolism, signaling, and molecular interactions. Plant Biotechnology Reports, 2018, 12, 77-92.	0.9	184
36	Calcium Supplementation Improves Na+/K+ Ratio, Antioxidant Defense and Glyoxalase Systems in Salt-Stressed Rice Seedlings. Frontiers in Plant Science, 2016, 7, 609.	1.7	171

#	Article	IF	CITATIONS
37	Exogenous sodium nitroprusside and glutathione alleviate copper toxicity by reducing copper uptake and oxidative damage in rice (Oryza sativa L.) seedlings. Protoplasma, 2014, 251, 1373-1386.	1.0	161
38	Insights into citric acid-induced cadmium tolerance and phytoremediation in Brassica juncea L.: Coordinated functions of metal chelation, antioxidant defense and glyoxalase systems. Ecotoxicology and Environmental Safety, 2018, 147, 990-1001.	2.9	161
39	Polyamines Confer Salt Tolerance in Mung Bean (Vigna radiata L.) by Reducing Sodium Uptake, Improving Nutrient Homeostasis, Antioxidant Defense, and Methylglyoxal Detoxification Systems. Frontiers in Plant Science, 2016, 7, 1104.	1.7	155
40	Strigolactones in plant adaptation to abiotic stresses: An emerging avenue of plant research. Plant, Cell and Environment, 2018, 41, 2227-2243.	2.8	155
41	Glutathione-induced drought stress tolerance in mung bean: coordinated roles of the antioxidant defence and methylglyoxal detoxification systems. AoB PLANTS, 2015, 7, plv069.	1.2	149
42	Jacks of metal/metalloid chelation trade in plantsââ,¬â€an overview. Frontiers in Plant Science, 2015, 6, 192.	1.7	148
43	Exogenous Silicon Attenuates Cadmium-Induced Oxidative Stress in Brassica napus L. by Modulating AsA-GSH Pathway and Glyoxalase System. Frontiers in Plant Science, 2017, 8, 1061.	1.7	147
44	ATP-sulfurylase, sulfur-compounds, and plant stress tolerance. Frontiers in Plant Science, 2015, 6, 210.	1.7	145
45	Oxidative Stress and Antioxidant Metabolism under Adverse Environmental Conditions: a Review. Botanical Review, The, 2021, 87, 421-466.	1.7	142
46	Physiological and biochemical mechanisms associated with trehalose-induced copper-stress tolerance in rice. Scientific Reports, 2015, 5, 11433.	1.6	141
47	Heat or cold priming-induced cross-tolerance to abiotic stresses in plants: key regulators and possible mechanisms. Protoplasma, 2018, 255, 399-412.	1.0	141
48	Selenium in plants: Boon or bane?. Environmental and Experimental Botany, 2020, 178, 104170.	2.0	140
49	Silicon-mediated regulation of antioxidant defense and glyoxalase systems confers drought stress tolerance in Brassica napus L South African Journal of Botany, 2018, 115, 50-57.	1.2	139
50	Seed Priming with Phytohormones: An Effective Approach for the Mitigation of Abiotic Stress. Plants, 2021, 10, 37.	1.6	139
51	Phytoremediation of Cadmium: Physiological, Biochemical, and Molecular Mechanisms. Biology, 2020, 9, 177.	1.3	135
52	Selenium in Higher Plants: Physiological Role, Antioxidant Metabolism and Abiotic Stress Tolerance. Journal of Plant Sciences, 2010, 5, 354-375.	0.2	135
53	Exogenous jasmonic acid modulates the physiology, antioxidant defense and glyoxalase systems in imparting drought stress tolerance in different Brassica species. Plant Biotechnology Reports, 2014, 8, 279-293.	0.9	134
54	Trehalose pretreatment induces salt tolerance in rice (Oryza sativa L.) seedlings: oxidative damage and co-induction of antioxidant defense and glyoxalase systems. Protoplasma, 2015, 252, 461-475.	1.0	134

#	Article	IF	CITATIONS
55	Evidence for a role of exogenous glycinebetaine and proline in antioxidant defense and methylglyoxal detoxification systems in mung bean seedlings under salt stress. Physiology and Molecular Biology of Plants, 2010, 16, 19-29.	1.4	133
56	Spermidine pretreatment enhances heat tolerance in rice seedlings through modulating antioxidative and glyoxalase systems. Plant Growth Regulation, 2014, 73, 31-44.	1.8	131
57	Quantification the impacts of climate change and crop management on phenology of maize-based cropping system in Punjab, Pakistan. Agricultural and Forest Meteorology, 2017, 247, 42-55.	1.9	126
58	Metal/metalloid stress tolerance in plants: role of ascorbate, its redox couple, and associated enzymes. Protoplasma, 2014, 251, 1265-1283.	1.0	121
59	Jasmonic acid: a key frontier in conferring abiotic stress tolerance in plants. Plant Cell Reports, 2021, 40, 1513-1541.	2.8	120
60	Methylglyoxal – a signaling molecule in plant abiotic stress responses. Free Radical Biology and Medicine, 2018, 122, 96-109.	1.3	117
61	Phenotypical, physiological and biochemical analyses provide insight into selenium-induced phytotoxicity in rice plants. Chemosphere, 2017, 178, 212-223.	4.2	116
62	Hydrogen Peroxide Pretreatment Mitigates Cadmium-Induced Oxidative Stress in Brassica napus L.: An Intrinsic Study on Antioxidant Defense and Glyoxalase Systems. Frontiers in Plant Science, 2017, 8, 115.	1.7	114
63	High temperature and drought stress cause abscisic acid and reactive oxygen species accumulation and suppress seed germination growth in rice. Protoplasma, 2019, 256, 1217-1227.	1.0	114
64	Extreme Temperature Responses, Oxidative Stress and Antioxidant Defense in Plants. , 0, , .		112
65	Roles of exogenous glutathione in antioxidant defense system and methylglyoxal detoxification during salt stress in mung bean. Biologia Plantarum, 2015, 59, 745-756.	1.9	112
66	Manganese-induced salt stress tolerance in rice seedlings: regulation of ion homeostasis, antioxidant defense and glyoxalase systems. Physiology and Molecular Biology of Plants, 2016, 22, 291-306.	1.4	112
67	Exogenous glutathione attenuates lead-induced oxidative stress in wheat by improving antioxidant defense and physiological mechanisms. Journal of Plant Interactions, 2018, 13, 203-212.	1.0	109
68	Potassium in plants: Growth regulation, signaling, and environmental stress tolerance. Plant Physiology and Biochemistry, 2022, 172, 56-69.	2.8	109
69	Jute: A Potential Candidate for Phytoremediation of Metals—A Review. Plants, 2020, 9, 258.	1.6	102
70	Physiological and biochemical mechanisms of spermine-induced cadmium stress tolerance in mung bean (Vigna radiata L.) seedlings. Environmental Science and Pollution Research, 2016, 23, 21206-21218.	2.7	100
71	Chitosan biopolymer promotes yield and stimulates accumulation of antioxidants in strawberry fruit. PLoS ONE, 2018, 13, e0203769.	1.1	99

Nitric oxide mediates hydrogen peroxide- and salicylic acid-induced salt tolerance in rice (Oryza sativa) Tj ETQq0 0 0 rg BT /Overlock 10 T 1.8 98

#	Article	IF	CITATIONS
73	Insights into spermine-induced combined high temperature and drought tolerance in mung bean: osmoregulation and roles of antioxidant and glyoxalase system. Protoplasma, 2017, 254, 445-460.	1.0	98
74	Effect of Tillage Practices on Soil Properties and Crop Productivity in Wheat-Mungbean-Rice Cropping System under Subtropical Climatic Conditions. Scientific World Journal, The, 2014, 2014, 1-15.	0.8	97
75	Melatonin-Induced Water Stress Tolerance in Plants: Recent Advances. Antioxidants, 2020, 9, 809.	2.2	95
76	Exogenous vanillic acid enhances salt tolerance of tomato: Insight into plant antioxidant defense and glyoxalase systems. Plant Physiology and Biochemistry, 2020, 150, 109-120.	2.8	94
77	Î ³ -aminobutyric acid (GABA) confers chromium stress tolerance in Brassica juncea L. by modulating the antioxidant defense and glyoxalase systems. Ecotoxicology, 2017, 26, 675-690.	1.1	92
78	Proline Protects Plants Against Abiotic Oxidative Stress. , 2014, , 477-522.		89
79	Metal/Metalloid-Based Nanomaterials for Plant Abiotic Stress Tolerance: An Overview of the Mechanisms. Plants, 2022, 11, 316.	1.6	85
80	Coordinate induction of antioxidant defense and glyoxalase system by exogenous proline and glycinebetaine is correlated with salt tolerance in mung bean. Frontiers of Agriculture in China, 2011, 5, 1-14.	0.2	84
81	Calcium Mitigates Arsenic Toxicity in Rice Seedlings by Reducing Arsenic Uptake and Modulating the Antioxidant Defense and Glyoxalase Systems and Stress Markers. BioMed Research International, 2015, 2015, 1-12.	0.9	84
82	Glycine Betaine Accumulation, Significance and Interests for Heavy Metal Tolerance in Plants. Plants, 2020, 9, 896.	1.6	84
83	Biostimulants for the Regulation of Reactive Oxygen Species Metabolism in Plants under Abiotic Stress. Cells, 2021, 10, 2537.	1.8	84
84	Exogenous calcium alleviates cadmium-induced oxidative stress in rice (Oryza sativa L.) seedlings by regulating the antioxidant defense and glyoxalase systems. Revista Brasileira De Botanica, 2016, 39, 393-407.	0.5	83
85	Polyamines-induced aluminum tolerance in mung bean: A study on antioxidant defense and methylglyoxal detoxification systems. Ecotoxicology, 2017, 26, 58-73.	1.1	83
86	Oxidative Damage and Antioxidant Defense in Sesamum indicum after Different Waterlogging Durations. Plants, 2019, 8, 196.	1.6	83
87	Physiological and Biochemical Mechanisms of Nitric Oxide Induced Abiotic Stress Tolerance in Plants. American Journal of Plant Physiology, 2010, 5, 295-324.	0.2	81
88	Role of Melatonin in Plant Tolerance to Soil Stressors: Salinity, pH and Heavy Metals. Molecules, 2020, 25, 5359.	1.7	79
89	Maleic acid assisted improvement of metal chelation and antioxidant metabolism confers chromium tolerance in Brassica juncea L. Ecotoxicology and Environmental Safety, 2017, 144, 216-226.	2.9	77
90	Silicon-induced antioxidant defense and methylglyoxal detoxification works coordinately in alleviating nickel toxicity in Oryza sativa L Ecotoxicology, 2019, 28, 261-276.	1.1	77

#	Article	IF	CITATIONS
91	Mechanism of Plant Growth Promotion and Disease Suppression by Chitosan Biopolymer. Agriculture (Switzerland), 2020, 10, 624.	1.4	77
92	Exogenous Spermidine Alleviates Low Temperature Injury in Mung Bean (Vigna radiata L.) Seedlings by Modulating Ascorbate-Glutathione and Glyoxalase Pathway. International Journal of Molecular Sciences, 2015, 16, 30117-30132.	1.8	75
93	Modulation of Antioxidant Machinery and the Methylglyoxal Detoxification System in Selenium-Supplemented Brassica napus Seedlings Confers Tolerance to High Temperature Stress. Biological Trace Element Research, 2014, 161, 297-307.	1.9	73
94	Exogenous nitric oxide pretreatment protects Brassica napus L. seedlings from paraquat toxicity through the modulation of antioxidant defense and glyoxalase systems. Plant Physiology and Biochemistry, 2018, 126, 173-186.	2.8	73
95	Interaction of sulfur with phytohormones and signaling molecules in conferring abiotic stress tolerance to plants. Plant Signaling and Behavior, 2018, 13, e1477905.	1.2	71
96	Quercetin Mediated Salt Tolerance in Tomato through the Enhancement of Plant Antioxidant Defense and Glyoxalase Systems. Plants, 2019, 8, 247.	1.6	71
97	Mechanistic Insights of Plant Growth Promoting Bacteria Mediated Drought and Salt Stress Tolerance in Plants for Sustainable Agriculture. International Journal of Molecular Sciences, 2022, 23, 3741.	1.8	71
98	Manganese-induced cadmium stress tolerance in rice seedlings: Coordinated action of antioxidant defense, glyoxalase system and nutrient homeostasis. Comptes Rendus - Biologies, 2016, 339, 462-474.	0.1	69
99	Quantification of Climate Warming and Crop Management Impacts on Cotton Phenology. Plants, 2017, 6, 7.	1.6	69
100	Exogenous nitric oxide donor and arginine provide protection againstÂshort-term drought stress in wheat seedlings. Physiology and Molecular Biology of Plants, 2018, 24, 993-1004.	1.4	69
101	Heavy metal and metalloid toxicity in horticultural plants: Tolerance mechanism and remediation strategies. Chemosphere, 2022, 303, 135196.	4.2	68
102	Purification of Glyoxalase I from Onion Bulbs and Molecular Cloning of Its cDNA. Bioscience, Biotechnology and Biochemistry, 2009, 73, 2007-2013.	0.6	67
103	Nitric oxide pretreatment enhances antioxidant defense and glyoxalase systems to confer PEG-induced oxidative stress in rapeseed. Journal of Plant Interactions, 2017, 12, 323-331.	1.0	67
104	Approaches in Enhancing Thermotolerance in Plants: An Updated Review. Journal of Plant Growth Regulation, 2020, 39, 456-480.	2.8	67
105	Nitric oxide and hydrogen sulfide: two intimate collaborators regulating plant defense against abiotic stress. Plant Growth Regulation, 2020, 90, 409-424.	1.8	67
106	Application of the CSM-CERES-Rice model for evaluation of plant density and nitrogen management of fine transplanted rice for an irrigated semiarid environment. Precision Agriculture, 2012, 13, 200-218.	3.1	66
107	EFFECTS OF DROUGHT STRESS ON THE QUALITY OF MAJOR OILSEED CROPS: IMPLICATIONS AND POSSIBLE MITIGATION STRATEGIES – A REVIEW. Applied Ecology and Environmental Research, 2019, 17, 4019-4043.	0.2	65
108	Interactive Effects of Salicylic Acid and Nitric Oxide in Enhancing Rice Tolerance to Cadmium Stress. International Journal of Molecular Sciences, 2019, 20, 5798.	1.8	63

#	Article	IF	CITATIONS
109	Enhancing Plant Productivity Under Salt Stress: Relevance of Poly-omics. , 2013, , 113-156.		61
110	Exogenous Silicon Protects Brassica napus Plants from Salinity-Induced Oxidative Stress Through the Modulation of AsA-GSH Pathway, Thiol-Dependent Antioxidant Enzymes and Glyoxalase Systems. Gesunde Pflanzen, 2018, 70, 185-194.	1.7	61
111	Selenium biofortification enhances the growth and alters the physiological response of lamb's lettuce grown under high temperature stress. Plant Physiology and Biochemistry, 2018, 127, 446-456.	2.8	60
112	Salicylic acid antagonizes selenium phytotoxicity in rice: selenium homeostasis, oxidative stress metabolism and methylglyoxal detoxification. Journal of Hazardous Materials, 2020, 394, 122572.	6.5	59
113	World Cotton Production and Consumption: An Overview. , 2020, , 1-7.		58
114	Attenuation of Drought Stress in Brassica Seedlings with Exogenous Application of Ca2+ and H2O2. Plants, 2017, 6, 20.	1.6	57
115	Pretreatment with Trichoderma harzianum alleviates waterlogging-induced growth alterations in tomato seedlings by modulating physiological, biochemical, and molecular mechanisms. Environmental and Experimental Botany, 2020, 171, 103946.	2.0	57
116	Exogenous melatonin enhances the reactive oxygen species metabolism, antioxidant defenseâ€related gene expression, and photosynthetic capacity of <scp><i>Phaseolus vulgaris</i></scp> L. to confer salt stress tolerance. Physiologia Plantarum, 2021, 173, 1369-1381.	2.6	57
117	Polyamine Action under Metal/Metalloid Stress: Regulation of Biosynthesis, Metabolism, and Molecular Interactions. International Journal of Molecular Sciences, 2019, 20, 3215.	1.8	56
118	Selenium Toxicity in Plants and Environment: Biogeochemistry and Remediation Possibilities. Plants, 2020, 9, 1711.	1.6	56
119	Exogenous Melatonin Modulates the Physiological and Biochemical Mechanisms of Drought Tolerance in Tartary Buckwheat (Fagopyrum tataricum (L.) Gaertn). Molecules, 2020, 25, 2828.	1.7	55
120	Arsenic and Human Health: Genotoxicity, Epigenomic Effects, and Cancer Signaling. Biological Trace Element Research, 2022, 200, 988-1001.	1.9	55
121	Physiological Role of Nitric Oxide in Plants Grown Under Adverse Environmental Conditions. , 2013, , 269-322.		54
122	Phenological Variation and its Relation with Yield in several Wheat (Triticum aestivum L.) Cultivars under Normal and Late Sowing Mediated Heat Stress Condition. Notulae Scientia Biologicae, 2010, 2, 51-56.	0.1	52
123	Roles of Osmolytes in Plant Adaptation to Drought and Salinity. , 2016, , 37-68.		51
124	Trehalose Protects Maize Plants from Salt Stress and Phosphorus Deficiency. Plants, 2019, 8, 568.	1.6	51
125	Omics: The way forward to enhance abiotic stress tolerance in <i>Brassica napus</i> L. GM Crops and Food, 2021, 12, 251-281.	2.0	51
126	Insights into acetate-mediated copper homeostasis and antioxidant defense in lentil under excessive copper stress. Environmental Pollution, 2020, 258, 113544.	3.7	50

#	Article	IF	CITATIONS
127	Comparative Physiological and Biochemical Changes in Tomato (Solanum lycopersicum L.) Under Salt Stress and Recovery: Role of Antioxidant Defense and Glyoxalase Systems. Antioxidants, 2019, 8, 350.	2.2	49
128	Application of the CSM-CERES-Rice model for evaluation of plant density and irrigation management of transplanted rice for an irrigated semiarid environment. Irrigation Science, 2013, 31, 491-506.	1.3	46
129	GABA shunt: a key-player in mitigation of ROS during stress. Plant Growth Regulation, 2021, 94, 131-149.	1.8	44
130	Nitric Oxide Regulates Plant Growth, Physiology, Antioxidant Defense, and Ion Homeostasis to Confer Salt Tolerance in the Mangrove Species, Kandelia obovata. Antioxidants, 2021, 10, 611.	2.2	43
131	Patterns of change in soil organic matter, physical properties and crop productivity under tillage practices and cropping systems in Bangladesh. Journal of Agricultural Science, 2017, 155, 216-238.	0.6	41
132	Heavy Metals in the Environment. , 2012, , 7-74.		40
133	Arsenic-Induced Oxidative Stress and Antioxidant Defense in Plants. Stresses, 2022, 2, 179-209.	1.8	40
134	Pretreatment of wheat (Triticum aestivum L.) seedlings with 2,4-D improves tolerance to salinity-induced oxidative stress and methylglyoxal toxicity by modulating ion homeostasis, antioxidant defenses, and glyoxalase systems. Plant Physiology and Biochemistry, 2020, 152, 221-231.	2.8	38
135	Purification and Characterization of a Cd-Binding Complex from the Root Tissue of Water Hyacinth Cultivated in a Cd2+-Containing Medium. Plant and Cell Physiology, 1986, 27, 1317-1325.	1.5	36
136	Modulation of Pumpkin Glutathione S-Transferases by Aldehydes and Related Compounds. Plant and Cell Physiology, 2003, 44, 481-490.	1.5	36
137	Mitigation of PEG-induced drought stress in rapeseed (Brassica rapa L.) by exogenous application of osmolytes. Biocatalysis and Agricultural Biotechnology, 2019, 20, 101197.	1.5	36
138	Alleviation of osmotic stress in Brassica napus, B. campestris, and B. juncea by ascorbic acid application. Biologia Plantarum, 2014, 58, 697-708.	1.9	35
139	Drought Stress Induced Oxidative Damage and Antioxidants in Plants. , 2014, , 345-367.		35
140	Interactive effects of nitric oxide and glutathione in mitigating copper toxicity of rice (<i>Oryza) Tj ETQq0 0 0 rgf</i>	3T /Qverloo 1.2	ck 10 Tf 50 2
141	5-aminolevulinic acid-mediated plant adaptive responses to abiotic stress. Plant Cell Reports, 2021, 40, 1451-1469.	2.8	35
142	Integrated Effect of Plant Density, N Rates and Irrigation Regimes on the Biomass Production, N Content, PAR Use Efficiencies and Water Productivity of Rice Under Irrigated Semiarid Environment. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2012, 40, 201.	0.5	34
143	Approaches to Enhancing Antioxidant Defense in Plants. Antioxidants, 2022, 11, 925.	2.2	34

Plant Responses and Tolerance to High Temperature Stress: Role of Exogenous Phytoprotectants. , 2015, , 385-435.

#	Article	IF	CITATIONS
145	Cotton productivity enhanced through transplanting and early sowing. Acta Scientiarum - Biological Sciences, 2018, 40, 34610.	0.3	33
146	Fe toxicity in plants: Impacts and remediation. Physiologia Plantarum, 2021, 173, 201-222.	2.6	33
147	Heat-shock positively modulates oxidative protection of salt and drought-stressed mustard (Brassica) Tj ETQq1 1	0.784314 1.2	rggT /Overl
148	Supplemental Selenium and Boron Mitigate Salt-Induced Oxidative Damages in Glycine max L. Plants, 2021, 10, 2224.	1.6	33
149	Plant Responses and Tolerance to Salt Stress: Physiological and Molecular Interventions. International Journal of Molecular Sciences, 2022, 23, 4810.	1.8	33
150	Saponin biopriming positively stimulates antioxidants defense, osmolytes metabolism and ionic status to confer salt stress tolerance in soybean. Acta Physiologiae Plantarum, 2020, 42, 1.	1.0	32
151	Strigolactones regulate arsenate uptake, vacuolar-sequestration and antioxidant defense responses to resist arsenic toxicity in rice roots. Journal of Hazardous Materials, 2021, 415, 125589.	6.5	32
152	Arsenic Toxicity in Plants and Possible Remediation. , 2015, , 433-501.		31
153	Acetate-induced modulation of ascorbate: glutathione cycle and restriction of sodium accumulation in shoot confer salt tolerance in Lens culinaris Medik Physiology and Molecular Biology of Plants, 2019, 25, 443-455.	1.4	31
154	Physiological and Molecular Responses for Metalloid Stress in Rice—A Comprehensive Overview. , 2019, , 341-369.		31
155	Rice (Oryza sativa L.) Establishment Techniques and Their Implications for Soil Properties, Global Warming Potential Mitigation and Crop Yields. Agronomy, 2020, 10, 888.	1.3	31
156	Seed Germination Behavior, Growth, Physiology and Antioxidant Metabolism of Four Contrasting Cultivars under Combined Drought and Salinity in Soybean. Antioxidants, 2022, 11, 498.	2.2	31
157	Assessment of genetic diversity in salt-tolerant rice and its wild relatives for ten SSR loci and one allele mining primer of salT gene located on 1st chromosome. Plant Systematics and Evolution, 2014, 300, 1741-1747.	0.3	30
158	Modulation of Cadmium Tolerance in Rice: Insight into Vanillic Acid-Induced Upregulation of Antioxidant Defense and Glyoxalase Systems. Plants, 2020, 9, 188.	1.6	30
159	Exogenous Tebuconazole and Trifloxystrobin Regulates Reactive Oxygen Species Metabolism Toward Mitigating Salt-Induced Damages in Cucumber Seedling. Plants, 2019, 8, 428.	1.6	29
160	Suitability Evaluation of Groundwater for Irrigation, Drinking and Industrial Purposes. American Journal of Environmental Sciences, 2009, 5, 413-419.	0.3	29
161	Exogenous Proline and Betaine-induced Upregulation of Glutathione Transferase and Glyoxalase I in Lentil (<i>Lens culinaris</i>) under Drought Stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2014, 42, .	0.5	28
162	Lithium in Environment and Potential Targets to Reduce Lithium Toxicity in Plants. Journal of Plant Growth Regulation, 2019, 38, 1574-1586.	2.8	28

#	Article	IF	CITATIONS
163	Agricultural Land Degradation: Processes and Problems Undermining Future Food Security. , 2020, , 17-61.		28
164	Selenium Supplementation and Crop Plant Tolerance to Metal/Metalloid Toxicity. Frontiers in Plant Science, 2021, 12, 792770.	1.7	27
165	Drought and salinity stresses in barley: Consequences and mitigation strategies. Australian Journal of Crop Science, 2019, , 810-820.	0.1	26
166	Modulation of the Antioxidant Defense System by Exogenous l-Glutamic Acid Application Enhances Salt Tolerance in Lentil (Lens culinaris Medik.). Biomolecules, 2021, 11, 587.	1.8	26
167	Targeting Glycinebetaine for Abiotic Stress Tolerance in Crop Plants: Physiological Mechanism, Molecular Interaction and Signaling. Phyton, 2019, 88, 185-221.	0.4	26
168	Foliar application of salicylic acid improves growth and yield attributes by upregulating the antioxidant defense system in Brassica campestris plants grown in lead-amended soils. Acta Agrobotanica, 2019, 72, .	1.0	26
169	Bacillus thuringiensis and Silicon Modulate Antioxidant Metabolism and Improve the Physiological Traits to Confer Salt Tolerance in Lettuce. Plants, 2021, 10, 1025.	1.6	25
170	Phosphorus confers tolerance against manganese toxicity in Prunus persica by reducing oxidative stress and improving chloroplast ultrastructure. Chemosphere, 2022, 291, 132999.	4.2	25
171	Phytostabilization of Pb-Zn Mine Tailings with Amorpha fruticosa Aided by Organic Amendments and Triple Superphosphate. Molecules, 2020, 25, 1617.	1.7	24
172	Exogenous Application of Methyl Jasmonate and Salicylic Acid Mitigates Drought-Induced Oxidative Damages in French Bean (Phaseolus vulgaris L.). Plants, 2021, 10, 2066.	1.6	24
173	EDTA reduces cadmium toxicity in mustard (Brassica juncea L.) by enhancing metal chelation, antioxidant defense and glyoxalase systems. Acta Agrobotanica, 2019, 72, .	1.0	23
174	Biochar and Chitosan Regulate Antioxidant Defense and Methylglyoxal Detoxification Systems and Enhance Salt Tolerance in Jute (Corchorus olitorius L.). Antioxidants, 2021, 10, 2017.	2.2	23
175	Use of iso-osmotic solution to understand salt stress responses in lentil (Lens culinaris Medik.). South African Journal of Botany, 2017, 113, 346-354.	1.2	22
176	Soil parameters, onion growth, physiology, biochemical and mineral nutrient composition in response to colored polythene film mulches. Annals of Agricultural Sciences, 2019, 64, 63-70.	1.1	22
177	Emerging Role of Osmolytes in Enhancing Abiotic Stress Tolerance in Rice. , 2019, , 677-708.		22
178	WHEAT (TRITICUM AESTIVUM L.) PRODUCTION UNDER DROUGHT AND HEAT STRESS – ADVERSE EFFECTS, MECHANISMS AND MITIGATION: A REVIEW. Applied Ecology and Environmental Research, 2019, 17, .	0.2	22
179	Soybean Production and Environmental Stresses. , 2016, , 61-102.		21
180	Drought Stress Tolerance in Wheat: Omics Approaches in Understanding and Enhancing Antioxidant		21

Defense. , 2018, , 267-307.

#	Article	IF	CITATIONS
181	Role of Tocopherol (Vitamin E) in Plants. , 2014, , 267-289.		20
182	Recent Advances in Biotechnology and Genomic Approaches for Abiotic Stress Tolerance in Crop Plants. , 2015, , 333-366.		20
183	Coumarin improves tomato plant tolerance to salinity by enhancing antioxidant defence, glyoxalase system and ion homeostasis. Plant Biology, 2021, 23, 181-192.	1.8	20
184	Plant growth regulator interactions results enhancement of antioxidant enzymes in <i>Catharanthus roseus</i> . Journal of Plant Interactions, 2010, 5, 135-145.	1.0	19
185	Silicon and Selenium. , 2014, , 377-422.		19
186	Targeting the Redox Regulatory Mechanisms for Abiotic Stress Tolerance in Crops. , 2018, , 151-220.		19
187	Tebuconazole and trifloxystrobin regulate the physiology, antioxidant defense and methylglyoxal detoxification systems in conferring salt stress tolerance in Triticum aestivum L Physiology and Molecular Biology of Plants, 2020, 26, 1139-1154.	1.4	19
188	Alleviation of Salinity Induced Oxidative Stress in Chenopodium quinoa by Fe Biofortification and Biochar—Endophyte Interaction. Agronomy, 2020, 10, 168.	1.3	19
189	Regulation of cuticular wax biosynthesis in plants under abiotic stress. Plant Biotechnology Reports, 2021, 15, 1-12.	0.9	19
190	Molecular Biology of Cadmium Toxicity in Saccharomyces cerevisiae. Biological Trace Element Research, 2021, 199, 4832-4846.	1.9	19
191	Exogenous application of gibberellic acid mitigates drought-induced damage in spring wheat. Acta Agrobotanica, 2019, 72, .	1.0	19
192	Zinc Oxide Nanoparticles Improve Pleioblastus pygmaeus Plant Tolerance to Arsenic and Mercury by Stimulating Antioxidant Defense and Reducing the Metal Accumulation and Translocation. Frontiers in Plant Science, 2022, 13, 841501.	1.7	19
193	Mechanisms of Selenium-Induced Enhancement of Abiotic Stress Tolerance in Plants. , 2018, , 269-295.		18
194	Unraveling Morphophysiological and Biochemical Responses of Triticum aestivum L. to Extreme pH: Coordinated Actions of Antioxidant Defense and Glyoxalase Systems. Plants, 2019, 8, 24.	1.6	18
195	Antioxidant Defense Systems and Remediation of Metal Toxicity in Plants. , 2021, , 91-124.		18
196	Role of selenium in mitigation of cadmium toxicity in pepper grown in hydroponic condition. Journal of Plant Nutrition, 2017, 40, 761-772.	0.9	17
197	Actions of Biological Trace Elements in Plant Abiotic Stress Tolerance. , 2017, , 213-274.		17
198	Explicating physiological and biochemical responses of wheat cultivars under acidity stress: insight into the antioxidant defense and glyoxalase systems. Physiology and Molecular Biology of Plants, 2019, 25, 865-879.	1.4	17

#	Article	IF	CITATIONS
199	Comparative morphological and transcriptomic responses of lowland and upland rice to root-zone hypoxia. Environmental and Experimental Botany, 2020, 169, 103916.	2.0	17
200	Regulation of Reactive Oxygen Species Metabolism and Glyoxalase Systems by Exogenous Osmolytes Confers Thermotolerance in Brassica napus. Gesunde Pflanzen, 2020, 72, 3-16.	1.7	17
201	β-Aminobutyric Acid Pretreatment Confers Salt Stress Tolerance in Brassica napus L. by Modulating Reactive Oxygen Species Metabolism and Methylglyoxal Detoxification. Plants, 2020, 9, 241.	1.6	17
202	Relative tolerance of different species of Brassica to cadmium toxicity: Coordinated role of antioxidant defense and glyoxalase systems. Plant OMICS, 2017, 10, 107-117.	0.4	17
203	Exogenous salicylic acid and kinetin modulate reactive oxygen species metabolism and glyoxalase system to confer waterlogging stress tolerance in soybean (Glycine max L.). Plant Stress, 2022, 3, 100057.	2.7	17
204	Chitosan and putrescine modulate reactive oxygen species metabolism and physiological responses during chili fruit ripening. Plant Physiology and Biochemistry, 2021, 163, 55-67.	2.8	16
205	Drought and Heat Stress in Cotton (Gossypium hirsutum L.): Consequences and Their Possible Mitigation Strategies. , 2020, , 613-634.		16
206	Molecular cloning of cDNAs for three tau-type glutathione S -transferases in pumpkin (Cucurbita) Tj ETQq0 0 0 r	gBT /Over 2.6	lock_10 Tf 50
207	Quercetin-4′-glucoside: a physiological inhibitor of the activities of dominant glutathione S-transferases in onion (Allium cepa L.) bulb. Acta Physiologiae Plantarum, 2009, 31, 301-309.	1.0	15
208	The Role of Sulfur in Plant Abiotic Stress Tolerance: Molecular Interactions and Defense Mechanisms. , 2018, , 221-252.		15
209	Can smart nutrient applications optimize the plant's hidden half to improve drought resistance?. Physiologia Plantarum, 2021, 172, 1007-1015.	2.6	15
210	Nitric Oxide Prevents Fe Deficiency-Induced Photosynthetic Disturbance, and Oxidative Stress in Alfalfa by Regulating Fe Acquisition and Antioxidant Defense. Antioxidants, 2021, 10, 1556.	2.2	15
211	Abscisic acid priming regulates arsenite toxicity in two contrasting rice (Oryza sativa L.) genotypes through differential functioning of sub1A quantitative trait loci. Environmental Pollution, 2021, 287, 117586.	3.7	15
212	Cytokinin and gibberellic acid-mediated waterlogging tolerance of mungbean (<i>Vigna radiata</i> L.) Tj ETQq0	0 0 rgBT /	Overlock 10 T
213	Comparative Performance of Hybrid and Elite Inbred Rice Varieties with respect to Their Source-Sink Relationship. Scientific World Journal, The, 2015, 2015, 1-11.	0.8	14
214	Co-Application of 24-Epibrassinolide and Titanium Oxide Nanoparticles Promotes Pleioblastus pygmaeus Plant Tolerance to Cu and Cd Toxicity by Increasing Antioxidant Activity and Photosynthetic Capacity and Reducing Heavy Metal Accumulation and Translocation. Antioxidants, 2022, 11, 451.	2.2	14

215	Genome Editing: A Promising Approach for Achieving Abiotic Stress Tolerance in Plants. International Journal of Genomics, 2022, 2022, 1-12.	0.8	14
216	Exogenous kinetin and putrescine synergistically mitigate salt stress in Luffa acutangula by modulating physiology and antioxidant defense. Physiology and Molecular Biology of Plants, 2020, 26, 2125-2137.	1.4	13

#	Article	IF	CITATIONS
217	Silver-nanoparticle and abscisic acid modulate sub1A quantitative trait loci functioning towards submergence tolerance in rice (Oryza sativa L.). Environmental and Experimental Botany, 2021, 181, 104276.	2.0	13
218	Oxidative stress tolerance potential of milk thistle ecotypes after supplementation of different plant growth-promoting agents under salinity. Plant Physiology and Biochemistry, 2021, 166, 53-65.	2.8	13
219	Strigolactones Modulate Cellular Antioxidant Defense Mechanisms to Mitigate Arsenate Toxicity in Rice Shoots. Antioxidants, 2021, 10, 1815.	2.2	13
220	Biochar actions for the mitigation of plant abiotic stress. Crop and Pasture Science, 2022, 74, 6-20.	0.7	13
221	The Plant Family Brassicaceae: Introduction, Biology, AndÂImportance. , 2020, , 1-43.		12
222	Plant Nutrients for Crop Growth, Development and Stress Tolerance. , 2020, , 43-92.		12
223	Yield, Dry Matter, Specific Gravity and Color of Three Bangladeshi Local Potato Cultivars as Influenced by Stage of Maturity. Journal of Plant Sciences, 2015, 10, 108-115.	0.2	12
224	Plant Oxidative Stress: Biology, Physiology and Mitigation. Plants, 2022, 11, 1185.	1.6	12
225	Heat stress responses and thermotolerance in soybean. , 2016, , 261-284.		11
226	Prospective Role of Plant Growth Regulators for Tolerance to Abiotic Stresses. , 2021, , 1-38.		11
227	Effect of tebuconazole and trifloxystrobin on Ceratocystis fimbriata to control black rot of sweet potato: processes of reactive oxygen species generation and antioxidant defense responses. World Journal of Microbiology and Biotechnology, 2021, 37, 148.	1.7	11
228	Protective role of tebuconazole and trifloxystrobin in wheat (Triticum aestivum L.) under cadmium stress via enhancement of antioxidant defense and glyoxalase systems. Physiology and Molecular Biology of Plants, 2021, 27, 1043-1057.	1.4	10
229	Editorial: Recent Insights Into the Double Role of Hydrogen Peroxide in Plants. Frontiers in Plant Science, 2022, 13, 843274.	1.7	10
230	DNA Fingerprinting and Genotyping of Cotton Varieties Using SSR Markers. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2012, 40, 261.	0.5	9
231	Responses, Adaptation, and ROS Metabolism in Plants Exposed to Waterlogging Stress. , 2017, , 257-281.		9
232	Salicylic Acid-Mediated Regulation of Morpho-Physiological and Yield Attributes of Wheat and Barley Plants in Deferring Salinity Stress. Journal of Plant Growth Regulation, 2022, 41, 1291-1303.	2.8	9
233	Amelioration of sodium and arsenic toxicity in Salvinia natans L. with 2,4-D priming through physiological responses. Environmental Science and Pollution Research, 2021, , 1.	2.7	9
234	Insight into the thiourea-induced drought tolerance in two chickpea varieties: Regulation of osmoprotection, reactive oxygen species metabolism and glyoxalase system. Plant Physiology and Biochemistry, 2021, 167, 449-458.	2.8	9

#	Article	IF	CITATIONS
235	Chitosan biopolymer improves the fruit quality of litchi (Litchi chinensis Sonn.). Acta Agrobotanica, 2019, 72, .	1.0	9
236	Enhancing Salt Tolerance in Soybean by Exogenous Boron: Intrinsic Study of the Ascorbate-Glutathione and Glyoxalase Pathways. Plants, 2021, 10, 2085.	1.6	9
237	Comparative Physiology of Indica and Japonica Rice under Salinity and Drought Stress: An Intrinsic Study on Osmotic Adjustment, Oxidative Stress, Antioxidant Defense and Methylglyoxal Detoxification. Stresses, 2022, 2, 156-178.	1.8	9
238	Purification and characterization of alliin lyase from Welsh onion, Allium fistulosum L Agricultural and Biological Chemistry, 1990, 54, 1077-1079.	0.3	8
239	Forage potential of Salsola species in arid-saline rangeland. Turkish Journal of Botany, 2021, 45, 203-215.	0.5	8
240	Hydrogen peroxide detoxifying enzymes show different activity patterns in host and non-host plant interactions with Magnaporthe oryzae Triticum pathotype. Physiology and Molecular Biology of Plants, 2021, 27, 2127-2139.	1.4	8
241	Photoactivated TiO2 Nanocomposite Delays the Postharvest Ripening Phenomenon through Ethylene Metabolism and Related Physiological Changes in Capsicum Fruit. Plants, 2022, 11, 513.	1.6	8
242	Cultural, Morphological and Pathogenic Characterization of Alternaria porri Causing Purple Blotch of Onion. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2016, 44, 222-227.	0.5	7
243	Brassicaceae Plants Response and Tolerance to Drought Stress: Physiological and Molecular Interventions. , 2020, , 229-261.		7
244	Contradictory Results of Soil Greenhouse Gas Emissions as Affected by Biochar Application: Special Focus on Alkaline Soils. International Journal of Environmental Research, 2021, 15, 903-920.	1.1	7
245	Differential Impact of Nitric Oxide and Abscisic Acid on the Cellular and Physiological Functioning of sub1A QTL Bearing Rice Genotype under Salt Stress. Plants, 2022, 11, 1084.	1.6	7
246	Zinc Supplementation Enhances Glutathione-Mediated Antioxidant Defense and Glyoxalase Systems to Conferring Salt Tolerance in Soybean (Glycine max L.). Agronomy, 2022, 12, 1032.	1.3	7
247	Sowing Dates and Cultivars Mediated Changes in Phenology and Yield Traits of Cotton-Sunflower Cropping System in the Arid Environment. International Journal of Plant Production, 2021, 15, 291-302.	1.0	6
248	Jute Responses and Tolerance to Abiotic Stress: Mechanisms and Approaches. Plants, 2021, 10, 1595.	1.6	6
249	Plant Phenolic Compounds for Abiotic Stress Tolerance. , 2022, , 193-237.		6
250	Modulation of osmoprotection and antioxidant defense by exogenously applied acetate enhances cadmium stress tolerance in lentil seedlings. Environmental Pollution, 2022, 308, 119687.	3.7	6
251	Quantifying Some Physiological and Productivity Indices of Canola (<i) 0.784314="" 1="" 1<br="" etqq1="" overlock="" rgbt="" tj="">Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2016, 44, 272-279.</i)>	0 Tf 50 10 0.5	7 Td (style= 5
252	Reactive oxygen species (ROS) management in engineered plants for abiotic stress tolerance. , 2020, , 241-262.		5

#	Article	IF	CITATIONS
253	Exogenous Selenium Mitigates Salt Stress in Soybean by Improving Growth, Physiology, Glutathione Homeostasis and Antioxidant Defense. Phyton, 2021, 90, 373-388.	0.4	5
254	Morphological, Physiobiochemical and Molecular Adaptability of Legumes of Fabaceae to Drought Stress, with Special Reference to Medicago Sativa L. , 2020, , 289-317.		5
255	Salinity effects on water potential and the normalized difference vegetation index in four species of a saline semi-arid ecosystem. PeerJ, 2021, 9, e12297.	0.9	5
256	Abiotic Stresses Mediated Changes in Morphophysiology of Cotton Plant. , 2020, , 341-366.		5
257	Screening of Soybean Genotypes for Waterlogging Stress Tolerance and Understanding the Physiological Mechanisms. Advances in Agriculture, 2022, 2022, 1-14.	0.3	5
258	Mechanism of Cadmium Toxicity and Tolerance in Crop Plants. , 2013, , 361-385.		4
259	Ion Homeostasis and Antioxidant Defense Toward Salt Tolerance in Plants. , 2018, , 415-436.		4
260	Maize Production Under Salinity and Drought Conditions: Oxidative Stress Regulation by Antioxidant Defense and Glyoxalase Systems. , 2019, , 1-34.		4
261	Adverse Effect of Drought on Quality of Major Cereal Crops: Implications and Their Possible Mitigation Strategies. , 2020, , 635-658.		4
262	An updated overview of the physiological and molecular responses of rice to anoxia. Frontiers in Bioscience, 2021, 26, 1240.	0.8	4
263	Screening and evaluation of chilli (Capsicum annuum L.) genotypes for waterlogging tolerance at seedling stage. Biocell, 2022, 46, 1613-1627.	0.4	4
264	Soybean Plants Under Waterlogging Stress: Responses and Adaptation Mechanisms. , 2022, , 103-134.		4
265	Salt Stress Responses and Tolerance in Soybean. Physiology, 0, , .	4.0	4
266	Insights into the Role of Iron Supplementation in Conferring Bicarbonate-Mediated Alkaline Stress Tolerance in Maize. Journal of Soil Science and Plant Nutrition, 2022, 22, 2719-2734.	1.7	4
267	Potential role of L-glutamic acid in mitigating cadmium toxicity in lentil (Lens culinaris Medik.) through modulating the antioxidant defence system and nutrient homeostasis. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2021, 49, 12485.	0.5	4
268	Screening and Assessment of Selected Chilli (Capsicum annuum L.) Genotypes for Drought Tolerance at Seedling Stage. Phyton, 2021, 90, 1425-1443.	0.4	3
269	Use of Biostimulants for Improving Abiotic Stress Tolerance in Brassicaceae Plants. , 2020, , 497-531.		3
270	Salinity and drought-induced methylglyoxal detoxification in Brassica spp. and purification of a high active glyoxalase I from tolerant genotype. Plant OMICS, 2016, 9, 352-359.	0.4	3

#	Article	IF	CITATIONS
271	Induction of hydrolytic enzyme activities in dormant seeds of Dracocephalum kotschyi Boiss. causes improvement of germination and seedling vigor indices. Acta Physiologiae Plantarum, 2022, 44, 1.	1.0	3
272	Saline Toxicity and Antioxidant Response in Oryza sativa: An Updated Review. , 2022, , 79-102.		3
273	Effects of Chemical Structure of 2,4-Dichlorophenoxyacetic Acid Derivatives on the Accumulation of GlutathioneS-Transferases in Cultured Pumpkin Cells. Bioscience, Biotechnology and Biochemistry, 1996, 60, 128-130.	0.6	2
274	Plant Resistance under Cold Stress. , 2014, , 79-98.		2
275	Potassium-Induced Regulation of Cellular Antioxidant Defense and Improvement of Physiological Processes in Wheat under Water Deficit Condition. Phyton, 2021, 90, 353-372.	0.4	2
276	Morphophysiological changes and reactive oxygen species metabolism in Corchorus olitorius L. under different abiotic stresses. Open Agriculture, 2021, 6, 549-562.	0.7	2
277	Zerovalent Iron Modulates the Influence of Arsenic-Contaminated Soil on Growth, Yield and Grain Quality of Rice. Stresses, 2021, 1, 90-104.	1.8	2
278	Biostimulation and biofortification of crop plants – new challenges for modern agriculture. Acta Agrobotanica, 2019, 72, .	1.0	2
279	Response and Tolerance of Fabaceae Plants to Metal/Metalloid Toxicity. , 2020, , 435-482.		2
280	Cotton-Based Intercropping Systems. , 2020, , 321-340.		2
281	Use of Osmolytes for Improving Abiotic Stress Tolerance in Fabaceae Plants. , 2020, , 181-222.		2
282	Wheat variety carrying 2NvS chromosomal segment provides yield advantage through lowering terminal heat–induced oxidative stress. Protoplasma, 2022, , 1.	1.0	2
283	Role of Phytohormones in Antioxidant Metabolism in Plants under Salinity and Water Stress. , 2022, , 151-191.		2
284	World Rice Production: An Overview. , 2022, , 3-12.		1
285	Heat Shock-Induced Salt Stress Tolerance in Lentil (Lens culinaris Medik.). Russian Journal of Plant Physiology, 2019, 66, 450-460.	0.5	Ο
286	Integration of phosphorus with organic manures and plant residues on growth and production of hybrid rice. Journal of Plant Nutrition, 2019, , 1-11.	0.9	0
287	Ion Homeostasis and Its Role in Salt Remediation by Halophytes. , 2021, , 1-9.		0
288	Exogenous Arginine Enhances Antioxidant Defense System and Regulates the Physiology of Lentil (Lens culinaris) under Salt Stress. , 0, , .		0

#	Article	IF	CITATIONS
289	Fabaceae Plants Response and Tolerance to High Temperature Stress. , 2020, , 337-371.		0
290	Enhancement of Abiotic Stress Tolerance in Camelina sativa: Conventional Breeding and Biotechnology. , 2020, , 195-202.		0
291	Improvement of Wheat (Triticum spp.) Through Genetic Manipulation. , 2021, , 33-66.		0
292	SEED GERMINATION BEHAVIOUR, SEEDLING GROWTH, MORPHO-PHYSIOLOGICAL AND YIELD ATTRIBUTES OF RICE GROWN IN CADMIUM-ADDED SOIL. Contributii Botanice, 2021, 56, 113-127.	0.4	0
293	Osmolyte-induced water deficit stress mitigation during panicle initiation stage in transplanted rice (Oryza sativa L.). Plant Science Today, 2022, 9, 9-20.	0.4	0
294	A decade of temperature variation and agronomic traits of durum wheat (Triticum durum L.). Arabian Journal of Geosciences, 2022, 15, 1.	0.6	0
295	Organic Amendments Improve Plant Morpho-Physiology and Antioxidant Metabolism in Mitigating Drought Stress in Bread Wheat (Triticum aestivum L.). Phyton, 2022, .	0.4	0
296	Stress Responses in Crops. Stresses, 2022, 2, 231-233.	1.8	0