
David E Pelster

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2615527/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ammonia Volatilization and Nitrogen Retention: How Deep to Incorporate Urea?. Journal of Environmental Quality, 2013, 42, 1635-1642.	1.0	176
2	Nitrous Oxide Emissions Respond Differently to Mineral and Organic Nitrogen Sources in Contrasting Soil Types. Journal of Environmental Quality, 2012, 41, 427-435.	1.0	122
3	NH ₃ volatilization, soil concentration and soil pH following subsurface banding of urea at increasing rates. Canadian Journal of Soil Science, 2013, 93, 261-268.	0.5	113
4	Groundwater recharge rates and surface runoff response to land use and land cover changes in semi-arid environments. Ecological Processes, 2016, 5, .	1.6	107
5	Soil nitrous oxide emissions from agricultural soils in Canada: Exploring relationships with soil, crop and climatic variables. Agriculture, Ecosystems and Environment, 2018, 254, 69-81.	2.5	94
6	Greenhouse gas emissions from natural ecosystems and agricultural lands in sub-Saharan Africa: synthesis of available data and suggestions for further research. Biogeosciences, 2016, 13, 4789-4809.	1.3	75
7	Nitrogen fertilization but not soil tillage affects nitrous oxide emissions from a clay loam soil under a maize–soybean rotation. Soil and Tillage Research, 2011, 115-116, 16-26.	2.6	62
8	Methane and Nitrous Oxide Emissions from Cattle Excreta on an East African Grassland. Journal of Environmental Quality, 2016, 45, 1531-1539.	1.0	58
9	Land use affects total dissolved nitrogen and nitrate concentrations in tropical montane streams in Kenya. Science of the Total Environment, 2017, 603-604, 519-532.	3.9	56
10	Estimating global terrestrial denitrification from measured N2O:(N2Oâ€⁻+â€⁻N2) product ratios. Current Opinion in Environmental Sustainability, 2020, 47, 72-80.	3.1	56
11	Regional nitrogen budget of the Lake Victoria Basin, East Africa: syntheses, uncertainties and perspectives. Environmental Research Letters, 2014, 9, 105009.	2.2	49
12	Greenhouse gas fluxes from agricultural soils of Kenya and Tanzania. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1568-1580.	1.3	49
13	Soil carbon dioxide and methane fluxes from forests and other land use types in an African tropical montane region. Biogeochemistry, 2019, 143, 171-190.	1.7	44
14	Smallholder farms in eastern African tropical highlands have low soil greenhouse gas fluxes. Biogeosciences, 2017, 14, 187-202.	1.3	43
15	Effect of Dung Quantity and Quality on Greenhouse Gas Fluxes From Tropical Pastures in Kenya. Global Biogeochemical Cycles, 2018, 32, 1589-1604.	1.9	40
16	Closing maize yield gaps in sub-Saharan Africa will boost soil N2O emissions. Current Opinion in Environmental Sustainability, 2020, 47, 95-105.	3.1	40
17	Crop residue incorporation alters soil nitrous oxide emissions during freeze–thaw cycles. Canadian Journal of Soil Science, 2013, 93, 415-425.	0.5	35
18	Nitrous Oxide Emissions from Clayey Soils Amended with Paper Sludges and Biosolids of Separated Pig Slurry. Journal of Environmental Quality, 2013, 42, 30-39.	1.0	35

DAVID E PELSTER

#	Article	IF	CITATIONS
19	Influence of soil properties on N2O and CO2 emissions from excreta deposited on tropical pastures in Kenya. Soil Biology and Biochemistry, 2020, 140, 107636.	4.2	34
20	The effects of climate on decomposition of cattle, sheep and goat manure in Kenyan tropical pastures. Plant and Soil, 2020, 451, 325-343.	1.8	33
21	Long-term assessment of soil and water conservation measures (Fanya-juu terraces) on soil organic matter in South Eastern Kenya. Geoderma, 2016, 274, 1-9.	2.3	32
22	Effects of Initial Soil Moisture, Clod Size, and Clay Content on Ammonia Volatilization after Subsurface Band Application of Urea. Journal of Environmental Quality, 2019, 48, 549-558.	1.0	27
23	Ground cover rice production systems increase soil carbon and nitrogen stocks at regional scale. Biogeosciences, 2015, 12, 4831-4840.	1.3	22
24	Management intensity controls soil N2O fluxes in an Afromontane ecosystem. Science of the Total Environment, 2018, 624, 769-780.	3.9	22
25	Evidencing overwinter loss of residual organic and clay-fixed nitrogen from spring-applied, 15N-labelled pig slurry. Canadian Journal of Soil Science, 2014, 94, 1-8.	0.5	21
26	Soil Greenhouse Gas Fluxes From Maize Production Under Different Soil Fertility Management Practices in East Africa. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005427.	1.3	21
27	Quantifying Greenhouse Gas Emissions from Managed and Natural Soils. , 2016, , 71-96.		21
28	Nitrate Sorption in an Agricultural Soil Profile. Applied and Environmental Soil Science, 2013, 2013, 1-7.	0.8	20
29	Simple and robust algorithms to estimate liveweight in African smallholder cattle. Animal Production Science, 2018, 58, 1758.	0.6	19
30	Quantifying Onâ€Farm Nitrous Oxide Emission Reductions in Food Supply Chains. Earth's Future, 2020, 8, e2020EF001504.	2.4	19
31	Soil N intensity as a measure to estimate annual N2O and NO fluxes from natural and managed ecosystems. Current Opinion in Environmental Sustainability, 2020, 47, 1-6.	3.1	19
32	Rates and intensity of freeze–thaw cycles affect nitrous oxide and carbon dioxide emissions from agricultural soils. Canadian Journal of Soil Science, 2019, 99, 472-484.	0.5	17
33	Effect of feeding practices and manure quality on CH4 and N2O emissions from uncovered cattle manure heaps in Kenya. Waste Management, 2021, 126, 209-220.	3.7	17
34	Can soil clay content predict ammonia volatilization losses from subsurface-banded urea in eastern Canadian soils?. Canadian Journal of Soil Science, 2018, 98, 556-565.	0.5	15
35	Overstory vegetation influence nitrogen and dissolved organic carbon flux from the atmosphere to the forest floor: Boreal Plain, Canada. Forest Ecology and Management, 2009, 259, 210-219.	1.4	14
36	Ammonia Volatilization after Surface Application of Laying-Hen and Broiler-Chicken Manures. Journal of Environmental Quality, 2014, 43, 1864-1872.	1.0	14

DAVID E PELSTER

#	Article	IF	CITATIONS
37	Earthworms regulate ability of biochar to mitigate CO2 and N2O emissions from a tropical soil. Applied Soil Ecology, 2019, 140, 57-67.	2.1	14
38	Reduced tillage increased growing season N2O emissions from a fine but not a coarse textured soil under the cool, humid climate of eastern Canada. Soil and Tillage Research, 2021, 206, 104833.	2.6	14
39	Interactive effects of dung deposited onto urine patches on greenhouse gas fluxes from tropical pastures in Kenya. Science of the Total Environment, 2021, 761, 143184.	3.9	13
40	Phosphorus sorption kinetics in different types of alkaline soils. Archives of Agronomy and Soil Science, 2014, 60, 577-586.	1.3	12
41	Runoff and inorganic nitrogen export from Boreal Plain watersheds six years after wildfire and one year after harvest. Journal of Environmental Engineering and Science, 2008, 7, 51-61.	0.3	10
42	Nitrous oxide emission factors for cattle dung and urine deposited onto tropical pastures: A review of field-based studies. Agriculture, Ecosystems and Environment, 2021, 322, 107637.	2.5	10
43	Land Use, Land Use History, and Soil Type Affect Soil Greenhouse Gas Fluxes From Agricultural Landscapes of the East African Highlands. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 976-990.	1.3	8
44	SUSTAINABLE DEVELOPMENT OF CROP-LIVESTOCK FARMS IN AFRICA. Frontiers of Agricultural Science and Engineering, 2021, 8, 175.	0.9	8
45	Why future nitrogen research needs the social sciences. Current Opinion in Environmental Sustainability, 2020, 47, 54-60.	3.1	7
46	Greenhouse Gas Emissions Response to Fertilizer Application and Soil Moisture in Dry Agricultural Uplands of Central Kenya. Atmosphere, 2022, 13, 463.	1.0	5
47	Pasture enclosures increase soil carbon dioxide flux rate in Semiarid Rangeland, Kenya. Carbon Balance and Management, 2018, 13, 24.	1.4	4
48	Soil N2O emission from organic and conventional cotton farming in Northern Tanzania. Science of the Total Environment, 2021, 785, 147301.	3.9	3
49	Editorial Overview: Climate change, reactive nitrogen, food security and sustainable agriculture - the case of N2O. Current Opinion in Environmental Sustainability, 2020, 47, A1-A4.	3.1	3
50	A MONITORING TECHNIQUE FOR HIGH-ALTITUDE HEADWATER STREAMS: A CASE STUDY IN THE HIGH ANDES. Oecologia Australis, 2013, 17, 527-532.	0.1	1