
Anita H Corbett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2615474/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The disease-associated proteins <i>Drosophila</i> Nab2 and Ataxin-2 interact with shared RNAs and coregulate neuronal morphology. Genetics, 2022, 220, .	1.2	4
2	The Nab2 RNA-binding protein patterns dendritic and axonal projections through a planar cell polarity-sensitive mechanism. G3: Genes, Genomes, Genetics, 2022, , .	0.8	2
3	A <i>Saccharomyces cerevisiae</i> model and screen to define the functional consequences of oncogenic histone missense mutations. G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	3
4	How to Select a Graduate School Program for a PhD in Biomedical Science. Current Protocols, 2022, 2, .	1.3	1
5	Proactive strategies for an inclusive faculty search process. Communications Biology, 2022, 5, .	2.0	1
6	An endogenous PI3K interactome promoting astrocyte-mediated neuroprotection identifies a novel association with RNA-binding protein ZC3H14. Journal of Biological Chemistry, 2021, 296, 100118.	1.6	4
7	Nucleus Nuclear Pores and Nuclear Import/Export. , 2021, , 398-404.		1
8	A budding yeast model for human disease mutations in the <i>EXOSC2</i> cap subunit of the RNA exosome complex. Rna, 2021, 27, 1046-1067.	1.6	3
9	The RNA-binding protein Nab2 regulates the proteome ofÂtheÂdeveloping Drosophila brain. Journal of Biological Chemistry, 2021, 297, 100877.	1.6	4
10	Practical advice for mentoring and supporting faculty colleagues in STEM fields: Views from mentor and mentee perspectives. Journal of Biological Chemistry, 2021, 297, 101062.	1.6	1
11	A Genetic Screen Links the Disease-Associated Nab2 RNA-Binding Protein to the Planar Cell Polarity Pathway in <i>Drosophila melanogaster</i> . G3: Genes, Genomes, Genetics, 2020, 10, 3575-3583.	0.8	6
12	Dissecting the roles of Cse1 and Nup2 in classical <scp>NLS argo</scp> release in vivo. Traffic, 2020, 21, 622-635.	1.3	12
13	Biallelic variants in the RNA exosome gene EXOSC5 are associated with developmental delays, short stature, cerebellar hypoplasia and motor weakness. Human Molecular Genetics, 2020, 29, 2218-2239.	1.4	19
14	A Drosophila model of Pontocerebellar Hypoplasia reveals a critical role for the RNA exosome in neurons. PLoS Genetics, 2020, 16, e1008901.	1.5	14
15	The RNA Exosome and Human Disease. Methods in Molecular Biology, 2020, 2062, 3-33.	0.4	40
16	The RNA Exosome and Genetic Disease. FASEB Journal, 2020, 34, 1-1.	0.2	0
17	Identification of RNA Exosome Cofactors in Neuronal Cells to Probe Disease Mechanism. FASEB Journal, 2020, 34, 1-1.	0.2	0
18	Modeling Pathogenic Variants in the RNA Exosome. RNA & Disease (Houston, Tex), 2020, 7, .	1.0	1

#	Article	IF	CITATIONS
19	Title is missing!. , 2020, 16, e1008901.		0
20	Title is missing!. , 2020, 16, e1008901.		0
21	Title is missing!. , 2020, 16, e1008901.		0
22	Title is missing!. , 2020, 16, e1008901.		0
23	Why we need good mentoring. Nature Reviews Cancer, 2019, 19, 489-493.	12.8	6
24	Depletion of HuR in murine skeletal muscle enhances exercise endurance and prevents cancer-induced muscle atrophy. Nature Communications, 2019, 10, 4171.	5.8	30
25	A-Tail of Telomerase RNA Maturation. Molecular Cell, 2019, 74, 635-636.	4.5	0
26	Proteomic analysis reveals that wildtype and alanine-expanded nuclear poly(A)-binding protein exhibit differential interactions in skeletal muscle. Journal of Biological Chemistry, 2019, 294, 7360-7376.	1.6	8
27	Structure–function relationships in the Nab2 polyadenosineâ€RNA binding Zn finger protein family. Protein Science, 2019, 28, 513-523.	3.1	22
28	Non-equivalence of nuclear import among nuclei in multinucleated skeletal muscle cells. Journal of Cell Science, 2018, 131, .	1.2	22
29	Post-transcriptional regulation of gene expression and human disease. Current Opinion in Cell Biology, 2018, 52, 96-104.	2.6	109
30	Overexpression of the base excision repair NTHL1 glycosylase causes genomic instability and early cellular hallmarks of cancer. Nucleic Acids Research, 2018, 46, 4515-4532.	6.5	35
31	The RNA exosome and RNA exosome-linked disease. Rna, 2018, 24, 127-142.	1.6	108
32	Post-transcriptional regulation of Pabpn1 by the RNA binding protein HuR. Nucleic Acids Research, 2018, 46, 7643-7661.	6.5	13
33	The polyadenosine RNA-binding protein ZC3H14 interacts with the THO complex and coordinately regulates the processing of neuronal transcripts. Nucleic Acids Research, 2018, 46, 6561-6575.	6.5	24
34	PABPN1., 2018,, 3766-3772.		0
35	ZC3H14. , 2018, , 6024-6030.		0
36	Novel mouse models of oculopharyngeal muscular dystrophy (OPMD) reveal early onset mitochondrial defects and suggest loss of PABPN1 may contribute to pathology. Human Molecular Genetics, 2017, 26, 3235-3252.	1.4	42

#	Article	IF	CITATIONS
37	Biochemical isolation of myonuclei employed to define changes to the myonuclear proteome that occur with aging. Aging Cell, 2017, 16, 738-749.	3.0	28
38	BERing the burden of damage: Pathway crosstalk and posttranslational modification of base excision repair proteins regulate DNA damage management. DNA Repair, 2017, 56, 51-64.	1.3	44
39	Nuclear poly(A) binding protein 1 (PABPN1) and Matrin3 interact in muscle cells and regulate RNA processing. Nucleic Acids Research, 2017, 45, 10706-10725.	6.5	60
40	The Conserved, Disease-Associated RNA Binding Protein dNab2 Interacts with the Fragile X Protein Ortholog in Drosophila Neurons. Cell Reports, 2017, 20, 1372-1384.	2.9	29
41	The RNA-binding protein, ZC3H14, is required for proper poly(A) tail length control, expression of synaptic proteins, and brain function in mice. Human Molecular Genetics, 2017, 26, 3663-3681.	1.4	31
42	Insight into the RNA Exosome Complex Through Modeling Pontocerebellar Hypoplasia Type 1b Disease Mutations in Yeast. Genetics, 2017, 205, 221-237.	1.2	28
43	Gleaning Insights from Fecal Microbiota Transplantation and Probiotic Studies for the Rational Design of Combination Microbial Therapies. Clinical Microbiology Reviews, 2017, 30, 191-231.	5.7	67
44	Biochemical Isolation of Myonuclei from Mouse Skeletal Muscle Tissue. Bio-protocol, 2017, 7, .	0.2	8
45	Use of a Grant Writing Class in Training <scp>PhD</scp> Students. Traffic, 2016, 17, 803-814.	1.3	9
46	The Polyadenosine RNA-binding Protein, Zinc Finger Cys3His Protein 14 (ZC3H14), Regulates the Pre-mRNA Processing of a Key ATP Synthase Subunit mRNA. Journal of Biological Chemistry, 2016, 291, 22442-22459.	1.6	22
47	Evolutionarily Conserved Polyadenosine RNA Binding Protein Nab2 Cooperates with Splicing Machinery To Regulate the Fate of Pre-mRNA. Molecular and Cellular Biology, 2016, 36, 2697-2714.	1.1	50
48	The Chromatin Remodeler ISW1 Is a Quality Control Factor that Surveys Nuclear mRNP Biogenesis. Cell, 2016, 167, 1201-1214.e15.	13.5	34
49	Identification of SUMO modification sites in the base excision repair protein, Ntg1. DNA Repair, 2016, 48, 51-62.	1.3	8
50	Transformation of Probiotic Yeast and Their Recovery from Gastrointestinal Immune Tissues Following Oral Gavage in Mice. Journal of Visualized Experiments, 2016, , e53453.	0.2	2
51	The Drosophila ortholog of the <scp>Z</scp> c3h14 <scp>RNA</scp> binding protein acts within neurons to pattern axon projection in the developing brain. Developmental Neurobiology, 2016, 76, 93-106.	1.5	34
52	ZC3H14., 2016,, 1-7.		2
53	Characterization of the Probiotic Yeast Saccharomyces boulardii in the Healthy Mucosal Immune System. PLoS ONE, 2016, 11, e0153351.	1.1	67
54	PABPN1., 2016,, 1-7.		0

#	Article	IF	CITATIONS
55	Links between mRNA splicing, mRNA quality control, and intellectual disability. RNA & Disease (Houston, Tex), 2016, 3, .	1.0	7
56	Mechanisms Regulating Protein Localization. Traffic, 2015, 16, 1039-1061.	1.3	120
57	An Antibody to Detect Alanine-Expanded PABPN1: A New Tool to Study Oculopharyngeal Muscular Dystrophy. Journal of Neuromuscular Diseases, 2015, 2, 439-446.	1.1	2
58	Post-transcriptional Regulation of Programmed Cell Death 4 (PDCD4) mRNA by the RNA-binding Proteins Human Antigen R (HuR) and T-cell Intracellular Antigen 1 (TIA1). Journal of Biological Chemistry, 2015, 290, 3468-3487.	1.6	40
59	A long and winding road to the RNA world. Rna, 2015, 21, 590-591.	1.6	0
60	The current state of eukaryotic DNA base damage and repair. Nucleic Acids Research, 2015, 43, gkv1136.	6.5	167
61	Nab3 Facilitates the Function of the TRAMP Complex in RNA Processing via Recruitment of Rrp6 Independent of Nrd1. PLoS Genetics, 2015, 11, e1005044.	1.5	33
62	Functional Heterologous Protein Expression by Genetically Engineered Probiotic Yeast Saccharomyces boulardii. PLoS ONE, 2014, 9, e112660.	1.1	37
63	Poly(A) <scp>RNA</scp> â€binding proteins and polyadenosine <scp>RNA</scp> : new members and novel functions. Wiley Interdisciplinary Reviews RNA, 2014, 5, 601-622.	3.2	70
64	A conserved role for the zinc finger polyadenosine RNA binding protein, ZC3H14, in control of poly(A) tail length. Rna, 2014, 20, 681-688.	1.6	54
65	Macromolecular transport between the nucleus and the cytoplasm: Advances in mechanism and emerging links to disease. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 2784-2795.	1.9	87
66	The <i>Schizosaccharomyces pombe</i> Hikeshi/Opi10 protein has similar biochemical functions to its human homolog but acts in different physiological contexts. FEBS Letters, 2014, 588, 1899-1905.	1.3	6
67	A compendium of RNA-binding motifs for decoding gene regulation. Nature, 2013, 499, 172-177.	13.7	1,281
68	Poly(A) Tail-Mediated Gene Regulation by Opposing Roles of Nab2 and Pab2 Nuclear Poly(A)-Binding Proteins in Pre-mRNA Decay. Molecular and Cellular Biology, 2013, 33, 4718-4731.	1.1	22
69	Control of mRNA stability contributes to low levels of nuclear poly(A) binding protein 1 (PABPN1) in skeletal muscle. Skeletal Muscle, 2013, 3, 23.	1.9	32
70	Automated Quantification of the Subcellular Localization of Multicompartment Proteins via Qâ€ <scp>SCAn</scp> . Traffic, 2013, 14, 1200-1208.	1.3	3
71	<scp>PABPN</scp> 1: molecular function and muscle disease. FEBS Journal, 2013, 280, 4230-4250.	2.2	96
72	New kid on the ID block. RNA Biology, 2012, 9, 555-562.	1.5	15

#	Article	IF	CITATIONS
73	Regulation of Base Excision Repair in Eukaryotes by Dynamic Localization Strategies. Progress in Molecular Biology and Translational Science, 2012, 110, 93-121.	0.9	6
74	H2B Ubiquitylation Controls the Formation of Export-Competent mRNP. Molecular Cell, 2012, 45, 132-139.	4.5	49
75	The long and the short of it: The role of the zinc finger polyadenosine RNA binding protein, Nab2, in control of poly(A) tail length. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 546-554.	0.9	34
76	Structural Basis for Polyadenosine-RNA Binding by Nab2 Zn Fingers and Its Function in mRNA Nuclear Export. Structure, 2012, 20, 1007-1018.	1.6	35
77	Mutation of the conserved polyadenosine RNA binding protein, ZC3H14/dNab2, impairs neural function in <i>Drosophila</i> and humans. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12390-12395.	3.3	77
78	Regulation of Nucleocytoplasmic Transport in Skeletal Muscle. Current Topics in Developmental Biology, 2011, 96, 273-302.	1.0	5
79	RNA-binding proteins and gene regulation in myogenesis. Trends in Pharmacological Sciences, 2011, 32, 652-658.	4.0	62
80	Distinct roles for classical nuclear import receptors in the growth of multinucleated muscle cells. Developmental Biology, 2011, 357, 248-258.	0.9	29
81	Air1 Zinc Knuckles 4 and 5 and a Conserved IWRXY Motif Are Critical for the Function and Integrity of the Trf4/5-Air1/2-Mtr4 Polyadenylation (TRAMP) RNA Quality Control Complex. Journal of Biological Chemistry, 2011, 286, 37429-37445.	1.6	61
82	The Ccr4-Not Complex Interacts with the mRNA Export Machinery. PLoS ONE, 2011, 6, e18302.	1.1	46
83	Quantitative Structural Analysis of Importin-β Flexibility: Paradigm for Solenoid Protein Structures. Structure, 2010, 18, 1171-1183.	1.6	89
84	Expanding the Definition of the Classical Bipartite Nuclear Localization Signal. Traffic, 2010, 11, 311-323.	1.3	94
85	Structural Basis for the Function of the Saccharomyces cerevisiae Gfd1 Protein in mRNA Nuclear Export. Journal of Biological Chemistry, 2010, 285, 20704-20715.	1.6	13
86	Regulation of base excision repair: Ntg1 nuclear and mitochondrial dynamic localization in response to genotoxic stress. Nucleic Acids Research, 2010, 38, 3963-3974.	6.5	33
87	Loss of nuclear poly(A)-binding protein 1 causes defects in myogenesis and mRNA biogenesis. Human Molecular Genetics, 2010, 19, 1058-1065.	1.4	105
88	Ubiquitin-mediated mRNP dynamics and surveillance prior to budding yeast mRNA export. Genes and Development, 2010, 24, 1927-1938.	2.7	131
89	The Mitogen-Activated Protein Kinase Slt2 Regulates Nuclear Retention of Non-Heat Shock mRNAs during Heat Shock-Induced Stress. Molecular and Cellular Biology, 2010, 30, 5168-5179.	1.1	48
90	Should INO Stay or Should INO Go: A DNA "Zip Code―Mediates Gene Retention at the Nuclear Pore. Molecular Cell, 2010, 40, 3-5.	4.5	5

#	Article	IF	CITATIONS
91	Recognition of Polyadenosine RNA by the Zinc Finger Domain of Nuclear Poly(A) RNA-binding Protein 2 (Nab2) Is Required for Correct mRNA 3′-End Formation*. Journal of Biological Chemistry, 2010, 285, 26022-26032.	1.6	41
92	The mating response cascade does not modulate changes in the steadyâ€state level of target mRNAs through control of mRNA stability. Yeast, 2009, 26, 261-272.	0.8	2
93	Mechanisms of nuclear mRNA quality control. RNA Biology, 2009, 6, 237-241.	1.5	80
94	The Classical Nuclear Localization Signal Receptor, Importin-α, Is Required for Efficient Transition Through the G1/S Stage of the Cell Cycle in <i>Saccharomyces cerevisiae</i> . Genetics, 2009, 181, 105-118.	1.2	13
95	Dynamic Compartmentalization of Base Excision Repair Proteins in Response to Nuclear and Mitochondrial Oxidative Stress. Molecular and Cellular Biology, 2009, 29, 794-807.	1.1	40
96	Nuclear localization signals and human disease. IUBMB Life, 2009, 61, 697-706.	1.5	88
97	Messenger RNA Export from the Nucleus: A Series of Molecular Wardrobe Changes. Traffic, 2009, 10, 1199-1208.	1.3	80
98	Splice variants of the human ZC3H14 gene generate multiple isoforms of a zinc finger polyadenosine RNA binding protein. Gene, 2009, 439, 71-78.	1.0	44
99	The Intracellular Mobility of Nuclear Import Receptors and NLS Cargoes. Biophysical Journal, 2009, 96, 3840-3849.	0.2	35
100	A Functional Interaction between the Evolutionarily Conserved Zinc Finger Poly(A) RNAâ€binding Protein, Nab2, and the Exosome Links mRNA 3′â€End Processing/Export with mRNA Quality Control. FASEB Journal, 2009, 23, 666.1.	0.2	0
101	Structure of the N-Terminal Mlp1-Binding Domain of the Saccharomyces cerevisiae mRNA-Binding Protein, Nab2. Journal of Molecular Biology, 2008, 376, 1048-1059.	2.0	47
102	Identification of Genes That Function in the Biogenesis and Localization of Small Nucleolar RNAs in Saccharomyces cerevisiae. Molecular and Cellular Biology, 2008, 28, 3686-3699.	1.1	19
103	Functional Significance of the Interaction between the mRNA-binding Protein, Nab2, and the Nuclear Pore-associated Protein, Mlp1, in mRNA Export. Journal of Biological Chemistry, 2008, 283, 27130-27143.	1.6	66
104	A PY-NLS Nuclear Targeting Signal Is Required for Nuclear Localization and Function of the Saccharomyces cerevisiae mRNA-binding Protein Hrp1. Journal of Biological Chemistry, 2008, 283, 12926-12934.	1.6	43
105	The Ty1 integrase protein can exploit the classical nuclear protein import machinery for entry into the nucleus. Nucleic Acids Research, 2008, 36, 4317-4326.	6.5	32
106	Quality control of mRNA export: An evolutionarily conserved zinc finger protein mediates preferential export of properly processed mRNA to the cytoplasm. FASEB Journal, 2008, 22, 992.1.	0.2	0
107	Actively Transcribed GAL Genes Can Be Physically Linked to the Nuclear Pore by the SAGA Chromatin Modifying Complex. Journal of Biological Chemistry, 2007, 282, 3042-3049.	1.6	115
108	Functional overlap between conserved and diverged KH domains in Saccharomyces cerevisiae SCP160. Nucleic Acids Research, 2007, 35, 1108-1118.	6.5	12

1

#	Article	IF	CITATIONS
109	The subcellular localization of the Niemann-Pick Type C proteins depends on the adaptor complex AP-3. Journal of Cell Science, 2007, 120, 3640-3652.	1.2	32
110	An Interaction between Two RNA Binding Proteins, Nab2 and Pub1, Links mRNA Processing/Export and mRNA Stability. Molecular and Cellular Biology, 2007, 27, 6569-6579.	1.1	19
111	Analysis of a predicted nuclear localization signal: implications for the intracellular localization and function of the Saccharomyces cerevisiae RNA-binding protein Scp160. Nucleic Acids Research, 2007, 35, 6862-6869.	6.5	5
112	Recognition of polyadenosine RNA by zinc finger proteins. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12306-12311.	3.3	74
113	The DEAD-Box Protein Dbp5 Controls mRNA Export by Triggering Specific RNA:Protein Remodeling Events. Molecular Cell, 2007, 28, 850-859.	4.5	200
114	Classical Nuclear Localization Signals: Definition, Function, and Interaction with Importin $\hat{I}\pm^*$. Journal of Biological Chemistry, 2007, 282, 5101-5105.	1.6	966
115	Enteropathogenic Escherichia coli Tir is an SH2/3 ligand that recruits and activates tyrosine kinases required for pedestal formation. Molecular Microbiology, 2007, 63, 1748-1768.	1.2	58
116	Identification and Characterization of the Arabidopsis Orthologs of Nuclear Transport Factor 2, the Nuclear Import Factor of Ran. Plant Physiology, 2006, 140, 869-878.	2.3	49
117	Nuclear Localization Signal Receptor Affinity Correlates with in Vivo Localization in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2006, 281, 23545-23556.	1.6	99
118	Process or perish: quality control in mRNA biogenesis. Nature Structural and Molecular Biology, 2005, 12, 482-488.	3.6	116
119	A Yeast Model System for Functional Analysis of the Niemann-Pick Type C Protein 1 Homolog, Ncr1p. Traffic, 2005, 6, 907-917.	1.3	42
120	Saccharomyces cerevisiae Npc2p Is a Functionally Conserved Homologue of the Human Niemann-Pick Disease Type C 2 Protein, hNPC2. Eukaryotic Cell, 2005, 4, 1851-1862.	3.4	45
121	Regulation of Nuclear Import by Phosphorylation Adjacent to Nuclear Localization Signals. Journal of Biological Chemistry, 2004, 279, 20613-20621.	1.6	123
122	Both KH and non-KH domain sequences are required for polyribosome association of Scp160p in yeast. Nucleic Acids Research, 2004, 32, 4768-4775.	6.5	17
123	A Hierarchy of Nuclear Localization Signals Governs the Import of the Regulatory Factor X Complex Subunits and MHC Class II Expression. Journal of Immunology, 2004, 173, 410-419.	0.4	15
124	Hot trends erupting in the nuclear transport field. EMBO Reports, 2004, 5, 453-458.	2.0	2
125	Importin α: a multipurpose nuclear-transport receptor. Trends in Cell Biology, 2004, 14, 505-514.	3.6	577

126 Nuclear Pores and Nuclear Import/Export. , 2004, , 109-114.

Anita H Corbett

#	Article	IF	CITATIONS
127	Structural basis for Nup2p function in cargo release and karyopherin recycling in nuclear import. EMBO Journal, 2003, 22, 5358-5369.	3.5	86
128	The Auto-inhibitory Function of Importin α Is Essentialin Vivo. Journal of Biological Chemistry, 2003, 278, 5854-5863.	1.6	67
129	Dissection of the Karyopherin α Nuclear Localization Signal (NLS)-binding Groove. Journal of Biological Chemistry, 2003, 278, 41947-41953.	1.6	58
130	Characterization of the Auto-inhibitory Sequence within the N-terminal Domain of Importin α. Journal of Biological Chemistry, 2003, 278, 21361-21369.	1.6	59
131	The C-terminal domain of myosin-like protein 1 (Mlp1p) is a docking site for heterogeneous nuclear ribonucleoproteins that are required for mRNA export. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1010-1015.	3.3	132
132	Domain Analysis of the Saccharomyces cerevisiaeHeterogeneous Nuclear Ribonucleoprotein, Nab2p. Journal of Biological Chemistry, 2003, 278, 6731-6740.	1.6	66
133	Nuclear RanGTP is not required for targeting small nucleolar RNAs to the nucleolus. Journal of Cell Science, 2003, 116, 177-186.	1.2	21
134	Nab2p Is Required for Poly(A) RNA Export in Saccharomyces cerevisiae and Is Regulated by Arginine Methylation via Hmt1p. Journal of Biological Chemistry, 2002, 277, 7752-7760.	1.6	168
135	Nuclear protein transport. Methods in Enzymology, 2002, 351, 587-607.	0.4	37
136	Importin alpha can migrate into the nucleus in an importin beta- and Ran-independent manner. EMBO Journal, 2002, 21, 5833-5842.	3.5	99
137	Structural basis for the interaction between NTF2 and nucleoporin FxFG repeats. EMBO Journal, 2002, 21, 2843-2853.	3.5	146
138	Identification and characterization of the human MOG1 gene. Gene, 2001, 266, 45-56.	1.0	22
139	Carboxymethylation of the PP2A Catalytic Subunit in Saccharomyces cerevisiae Is Required for Efficient Interaction with the B-type Subunits Cdc55p and Rts1p. Journal of Biological Chemistry, 2001, 276, 1570-1577.	1.6	116
140	Functional Analysis of the Hydrophobic Patch on Nuclear Transport Factor 2 Involved in Interactions with the Nuclear Porein Vivo. Journal of Biological Chemistry, 2001, 276, 38820-38829.	1.6	26
141	Conditional Mutations in γ-Tubulin Reveal Its Involvement in Chromosome Segregation and Cytokinesis. Molecular Biology of the Cell, 2001, 12, 2469-2481.	0.9	56
142	Dissection of a Nuclear Localization Signal. Journal of Biological Chemistry, 2001, 276, 1317-1325.	1.6	284
143	Interaction between Ran and Mog1 Is Required for Efficient Nuclear Protein Import. Journal of Biological Chemistry, 2001, 276, 41255-41262.	1.6	26
144	The Molecular Mechanism of Transport of Macromolecules Through Nuclear Pore Complexes. Traffic, 2000, 1, 448-456.	1.3	66

#	Article	IF	CITATIONS
145	The Mechanism of Ran Import into the Nucleus by Nuclear Transport Factor 2. Journal of Biological Chemistry, 2000, 275, 28575-28582.	1.6	38
146	Quantitative Analysis of Nuclear Localization Signal (NLS)-Importin \hat{I}_{\pm} Interaction through Fluorescence Depolarization. Journal of Biological Chemistry, 2000, 275, 21218-21223.	1.6	93
147	The Interaction Between Ran and NTF2 is Required for Cell Cycle Progression. Molecular Biology of the Cell, 2000, 11, 2617-2629.	0.9	28
148	Crystallization and Initial X-Ray Diffraction Characterization of Complexes of FxFG Nucleoporin Repeats with Nuclear Transport Factors. Journal of Structural Biology, 2000, 131, 240-247.	1.3	33
149	SGD1encodes an essential nuclear protein ofSaccharomyces cerevisiaethat affects expression of theGPD1gene for glycerol 3-phosphate dehydrogenase. FEBS Letters, 2000, 483, 87-92.	1.3	20
150	SAC3 may link nuclear protein export to cell cycle progression. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 3224-9.	3.3	28
151	Saccharomyces cerevisiaeNtg1p and Ntg2p:Â Broad SpecificityN-Glycosylases for the Repair of Oxidative DNA Damage in the Nucleus and Mitochondriaâ€. Biochemistry, 1999, 38, 11298-11306.	1.2	110
152	Engineered mutants in the switch II loop of ran define the contribution made by key residues to the interaction with nuclear transport factor 2 (NTF2) and the role of this interaction in nuclear protein import. Journal of Molecular Biology, 1999, 289, 565-577.	2.0	18
153	Interaction between the Small GTPase Ran/Gsp1p and Ntf2p Is Required for Nuclear Transport. Molecular and Cellular Biology, 1997, 17, 3755-3767.	1.1	97
154	Nuclear protein import is decreased by engineered mutants of nuclear transport factor 2 (NTF2) that do not bind GDP-Ran. Journal of Molecular Biology, 1997, 272, 716-730.	2.0	70
155	Dynamic localization of the nuclear import receptor and its interactions with transport factors Journal of Cell Biology, 1996, 133, 1163-1176.	2.3	127
156	The NTF2 Gene Encodes an Essential, Highly Conserved Protein That Functions in Nuclear Transport in Vivo. Journal of Biological Chemistry, 1996, 271, 18477-18484.	1.6	93
157	<i>SEC3</i> Mutations Are Synthetically Lethal With Profilin Mutations and Cause Defects in Diploid-Specific Bud-Site Selection. Genetics, 1996, 144, 495-510.	1.2	59
158	Abasic Sites Stimulate Double-stranded DNA Cleavage Mediated by Topoisomerase II. Journal of Biological Chemistry, 1995, 270, 21441-21444.	1.6	92
159	Rna1p, a Ran/TC4 GTPase activating protein, is required for nuclear import Journal of Cell Biology, 1995, 130, 1017-1026.	2.3	172
160	Defining functional drug-interaction domains on topoisomerase II by exploiting mechanistic differences between drug classes. Cancer Chemotherapy and Pharmacology, 1994, 34, S19-S25.	1.1	27
161	Effects of topoisomerase II-targeted drugs on enzyme-mediated DNA cleavage and ATP hydrolysis: Evidence for distinct drug interaction domains on topoisomerase II. Biochemistry, 1993, 32, 3638-3643.	1.2	96
162	Protein kinase C modulates the catalytic activity of topoisomerase II by enhancing the rate of ATP hydrolysis: evidence for a common mechanism of regulation by phosphorylation. Biochemistry, 1993, 32, 2090-2097.	1.2	56

#	Article	IF	CITATIONS
163	When good enzymes go bad: Conversion of topoisomerase II to a cellular toxin by antineoplastic drugs. Chemical Research in Toxicology, 1993, 6, 585-597.	1.7	214