Fengwu Bai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2615364/publications.pdf

Version: 2024-02-01

567281 713466 21 1,806 15 21 citations h-index g-index papers 23 23 23 2292 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzyme and Microbial Technology, 2007, 41, 312-317.	3.2	570
2	Manipulating environmental stresses and stress tolerance of microalgae for enhanced production of lipids and value-added products–A review. Bioresource Technology, 2017, 244, 1198-1206.	9.6	250
3	Recent advances and state-of-the-art strategies in strain and process engineering for biobutanol production by Clostridium acetobutylicum. Biotechnology Advances, 2017, 35, 310-322.	11.7	208
4	Improvement of cellulase production in Trichoderma reesei Rut-C30 by overexpression of a novel regulatory gene Trvib-1. Bioresource Technology, 2018, 247, 676-683.	9.6	116
5	Constitutive cellulase production from glucose using the recombinant Trichoderma reesei strain overexpressing an artificial transcription activator. Bioresource Technology, 2017, 223, 317-322.	9.6	97
6	Overproduction of cellulase by Trichoderma reesei RUT C30 through batch-feeding of synthesized low-cost sugar mixture. Bioresource Technology, 2016, 216, 503-510.	9.6	89
7	On-site cellulase production and efficient saccharification of corn stover employing cbh2 overexpressing Trichoderma reesei with novel induction system. Bioresource Technology, 2017, 238, 643-649.	9.6	57
8	Transcriptional analysis of Kluyveromyces marxianus for ethanol production from inulin using consolidated bioprocessing technology. Biotechnology for Biofuels, 2015, 8, 115.	6.2	56
9	Deletion of acetate transporter gene ADY2 improved tolerance of Saccharomyces cerevisiae against multiple stresses and enhanced ethanol production in the presence of acetic acid. Bioresource Technology, 2017, 245, 1461-1468.	9.6	55
10	Towards efficient bioethanol production from agricultural and forestry residues: Exploration of unique natural microorganisms in combination with advanced strain engineering. Bioresource Technology, 2016, 215, 84-91.	9.6	51
11	Evaluation of hydrophobic micro-zeolite-mixed matrix membrane and integrated with acetone–butanol–ethanol fermentation for enhanced butanol production. Biotechnology for Biofuels, 2015, 8, 105.	6.2	50
12	The vital role of citrate buffer in acetone–butanol–ethanol (ABE) fermentation using corn stover and high-efficient product recovery by vapor stripping–vapor permeation (VSVP) process. Biotechnology for Biofuels, 2016, 9, 146.	6.2	43
13	Absence of Rtt109p, a fungal-specific histone acetyltransferase, results in improved acetic acid tolerance of <i>Saccharomyces cerevisiae </i> . FEMS Yeast Research, 2016, 16, fow 010.	2.3	39
14	Improved ethanol production at high temperature by consolidated bioprocessing using Saccharomyces cerevisiae strain engineered with artificial zinc finger protein. Bioresource Technology, 2017, 245, 1447-1454.	9.6	31
15	Development of stress tolerant Saccharomyces cerevisiae strains by metabolic engineering: New aspects from cell flocculation and zinc supplementation. Journal of Bioscience and Bioengineering, 2017, 123, 141-146.	2.2	29
16	Synergistic effect of calcium and zinc on glucose/xylose utilization and butanol tolerance of <i>Clostridium acetobutylicum </i> . FEMS Microbiology Letters, 2016, 363, fnw023.	1.8	17
17	Metabolic engineering of <i>Zymomonas mobilis </i> for continuous co-production of bioethanol and poly-3-hydroxybutyrate (PHB). Green Chemistry, 2022, 24, 2588-2601.	9.0	17
18	Production of l-alanyl-l-glutamine by recycling E. coli expressing \hat{l}_{\pm} -amino acid ester acyltransferase. Bioresource Technology, 2017, 245, 1603-1609.	9.6	13

Fengwu Bai

#	Article	IF	CITATIONS
19	Dimorphism of Trichosporon cutaneum and impact on its lipid production. Biotechnology for Biofuels, 2019, 12, 203.	6.2	9
20	Characterization of inulinase promoter from Kluyveromyces marxianus for intensive protein expression in industrial biotechnology. FEMS Yeast Research, 2017, 17, .	2.3	4
21	Deciphering Molecular Mechanism Underlying Self-Flocculation of Zymomonas mobilis for Robust Production. Applied and Environmental Microbiology, 2022, 88, e0239821.	3.1	4