
Aurelie Vandenbeuch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2615118/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The stability of tastant detection by mouse lingual chemosensory tissue requires Regulator of G protein Signaling-21 (RGS21). Chemical Senses, 2021, 46, .	2.0	2
2	Why low concentrations of salt enhance sweet taste. Acta Physiologica, 2020, 230, e13560.	3.8	2
3	Sugar causes obesity and metabolic syndrome in mice independently of sweet taste. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E276-E290.	3.5	15
4	Optogenetic Activation of Type III Taste Cells Modulates Taste Responses. Chemical Senses, 2020, 45, 533-539.	2.0	9
5	Physiological and Behavioral Responses to Optogenetic Stimulation of PKD2L1 ⁺ Type III Taste Cells. ENeuro, 2019, 6, ENEURO.0107-19.2019.	1.9	15
6	Clutamate: Tastant and Neuromodulator in Taste Buds. Advances in Nutrition, 2016, 7, 823S-827S.	6.4	15
7	FGF21 Mediates Endocrine Control of Simple Sugar Intake and Sweet Taste Preference by the Liver. Cell Metabolism, 2016, 23, 335-343.	16.2	270
8	The Role of 5-HT ₃ Receptors in Signaling from Taste Buds to Nerves. Journal of Neuroscience, 2015, 35, 15984-15995.	3.6	55
9	Mice Lacking Pannexin 1 Release ATP and Respond Normally to All Taste Qualities. Chemical Senses, 2015, 40, 461-467.	2.0	24
10	Postsynaptic P2X3â€containing receptors in gustatory nerve fibres mediate responses to all taste qualities in mice. Journal of Physiology, 2015, 593, 1113-1125.	2.9	74
11	Role of the ectonucleotidase NTPDase2 in taste bud function. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14789-14794.	7.1	90
12	Evidence for a role of glutamate as an efferent transmitter in taste buds. BMC Neuroscience, 2010, 11, 77.	1.9	40
13	Capacitance Measurements of Regulated Exocytosis in Mouse Taste Cells. Journal of Neuroscience, 2010, 30, 14695-14701.	3.6	36