Binghui Deng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2614892/publications.pdf

Version: 2024-02-01

623574 610775 33 626 14 24 citations g-index h-index papers 34 34 34 444 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Revealing the structural role of MgO in aluminosilicate glasses. Acta Materialia, 2022, 222, 117417.	3.8	15
2	Toward revealing atomic deformation mechanics in lithium disilicate and βâ€quartz containing glassâ€eramics. Journal of the American Ceramic Society, 2022, 105, 990.	1.9	1
3	Investigation of microscale fracture mechanisms in glass–ceramics using peridynamics simulations. Journal of the American Ceramic Society, 2022, 105, 4304-4320.	1.9	10
4	A novel approach to generate glass-ceramics samples for molecular dynamics simulations. Computational Materials Science, 2021, 186, 110008.	1.4	10
5	Reduced Plastic Dilatancy in Polymer Glasses. Macromolecular Theory and Simulations, 2021, 30, 2000063.	0.6	3
6	Impact of pressure on structure and properties of hotâ€compressed Na ₂ 0–Al ₂ 0 ₃ –SiO ₂ glass by molecular dynamics simulations. Journal of the American Ceramic Society, 2021, 104, 2530-2538.	1.9	5
7	Design ductile and work-hardenable composites with all brittle constituents. Acta Materialia, 2021, 208, 116770.	3.8	10
8	Toward revealing full atomic picture of nanoindentation deformation mechanisms in Li2O-2SiO2 glass-ceramics. Acta Materialia, 2021, 208, 116715.	3.8	20
9	Experimental method to quantify the ring size distribution in silicate glasses and simulation validation thereof. Science Advances, 2021, 7, .	4.7	36
10	Strain rate-dependent tensile response of glassy silicon nanowires studied by accelerated atomistic simulations. Journal of Applied Physics, 2021, 130, .	1.1	5
11	Atomic-scale modeling of crack branching in oxide glass. Acta Materialia, 2021, 216, 117098.	3.8	13
12	Revealing the medium-range structure of glassy silica using force-enhanced atomic refinement. Journal of Non-Crystalline Solids, 2021, 573, 121138.	1.5	7
13	Nucleation pathways in barium silicate glasses. Scientific Reports, 2021, 11, 69.	1.6	10
14	Toughening of Li ₂ Oâ€2SiO ₂ glassâ€ceramics induced by intriguing deformation behavior of lithium disilicate nanocrystal. Journal of the American Ceramic Society, 2020, 103, 965-972.	1.9	18
15	Critical stress map for ZrO2 tetragonal to monoclinic phase transformation in ZrO2-toughened glass-ceramics. Materialia, 2020, 9, 100548.	1.3	35
16	Machine learning on density and elastic property of oxide glasses driven by large dataset. Journal of Non-Crystalline Solids, 2020, 529, 119768.	1.5	63
17	Data-driven predictive models for chemical durability of oxide glass under different chemical conditions. Npj Materials Degradation, 2020, 4, .	2.6	14
18	Understanding the response of aluminosilicate and aluminoborate glasses to sharp contact loading using molecular dynamics simulation. Journal of Applied Physics, 2020, 128, .	1.1	8

#	Article	IF	CITATIONS
19	Atomic picture of crack propagation in Li ₂ Oâ€2SiO ₂ glassâ€eeramics revealed by molecular dynamics simulations. Journal of the American Ceramic Society, 2020, 103, 4304-4312.	1.9	21
20	Revisiting the Makishima–Mackenzie model for predicting the young's modulus of oxide glasses. Acta Materialia, 2020, 195, 252-262.	3.8	28
21	Critical feature space for predicting the glass forming ability of metallic alloys revealed by machine learning. Chemical Physics, 2020, 538, 110898.	0.9	41
22	Investigation on the structural origin of low thermal expansion coefficient of fused silica. Materialia, 2020, 12, 100752.	1.3	15
23	Magic auxeticity angle of graphene. Carbon, 2019, 149, 350-354.	5.4	38
24	The embrittlement and toughening of metallic glasses from nano-crystallization. Journal of Applied Physics, 2019, 125, .	1.1	11
25	Molecular dynamics simulations on fracture toughness of Al2O3-SiO2 glass-ceramics. Scripta Materialia, 2019, 162, 277-280.	2.6	46
26	On measuring the fracture energy of model metallic glasses. Journal of Applied Physics, 2018, 124, .	1.1	30
27	The normal-auxeticity mechanical phase transition in graphene. 2D Materials, 2017, 4, 021020.	2.0	49
28	Dynamic self-assembly of †living' polymeric chains. Chemical Physics Letters, 2017, 668, 14-18.	1.2	8
29	Comparison of chain-growth polymerization in solution versus on surface using reactive coarse-grained simulations. Polymer, 2017, 129, 105-116.	1.8	14
30	Solvent Effect on the Diffusion of Unentangled Linear Polymer Melts. Langmuir, 2017, 33, 11845-11850.	1.6	8
31	A reactive coarse-grained model for polydisperse polymers. Polymer, 2016, 98, 88-99.	1.8	11
32	Microstructure and Properties of Electron Beam Welded Tantalum-to-Stainless Steel Joints. Rare Metal Materials and Engineering, 2013, 42, 914-918.	0.8	15
33	Interface structure characterization of Fe36Ni alloy with ultrasonic soldering. Journal of Alloys and Compounds, 2013, 576, 386-392.	2.8	8