
## Lu Wang

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2614123/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Improving the impact strength of Poly(lactic acid) (PLA) in fused layer modeling (FLM). Polymer, 2017, 114, 242-248.                                                                                                            | 3.8  | 204       |
| 2  | Wood–Plastic Composite Technology. Current Forestry Reports, 2015, 1, 139-150.                                                                                                                                                  | 7.4  | 116       |
| 3  | Alignment of Cellulose Nanofibers: Harnessing Nanoscale Properties to Macroscale Benefits. ACS<br>Nano, 2021, 15, 3646-3673.                                                                                                    | 14.6 | 108       |
| 4  | Effect of fused layer modeling (FLM) processing parameters on impact strength of cellular polypropylene. Polymer, 2017, 113, 74-80.                                                                                             | 3.8  | 89        |
| 5  | Recent Advances in Functional Materials through Cellulose Nanofiber Templating. Advanced<br>Materials, 2021, 33, e2005538.                                                                                                      | 21.0 | 77        |
| 6  | Cellulose nanofibrils versus cellulose nanocrystals: Comparison of performance in flexible<br>multilayer films for packaging applications. Food Packaging and Shelf Life, 2020, 23, 100464.                                     | 7.5  | 66        |
| 7  | Recycling of natural fiber composites: Challenges and opportunities. Resources, Conservation and Recycling, 2022, 177, 105962.                                                                                                  | 10.8 | 62        |
| 8  | High-Strength Polylactic Acid (PLA) Biocomposites Reinforced by Epoxy-Modified Pine Fibers. ACS<br>Sustainable Chemistry and Engineering, 2020, 8, 13236-13247.                                                                 | 6.7  | 59        |
| 9  | Material Extrusion Additive Manufacturing of Wood and Lignocellulosic Filled Composites. Polymers, 2020, 12, 2115.                                                                                                              | 4.5  | 52        |
| 10 | Review on Nonconventional Fibrillation Methods of Producing Cellulose Nanofibrils and Their<br>Applications. Biomacromolecules, 2021, 22, 4037-4059.                                                                            | 5.4  | 45        |
| 11 | Effect of fused deposition modeling process parameters on the mechanical properties of a filled polypropylene. Progress in Additive Manufacturing, 2018, 3, 205-214.                                                            | 4.8  | 44        |
| 12 | Towards industrial-scale production of cellulose nanocomposites using melt processing: A critical review on structure-processing-property relationships. Composites Part B: Engineering, 2020, 201, 108297.                     | 12.0 | 41        |
| 13 | Cellulose nanofibrilâ€reinforced polypropylene composites for material extrusion: Rheological properties. Polymer Engineering and Science, 2018, 58, 793-801.                                                                   | 3.1  | 39        |
| 14 | Spray-Dried Cellulose Nanofibril-Reinforced Polypropylene Composites for Extrusion-Based Additive<br>Manufacturing: Nonisothermal Crystallization Kinetics and Thermal Expansion. Journal of Composites<br>Science, 2018, 2, 7. | 3.0  | 35        |
| 15 | Mechanisms contributing to mechanical property changes in composites of polypropylene reinforced with spray-dried cellulose nanofibrils. Cellulose, 2018, 25, 439-448.                                                          | 4.9  | 33        |
| 16 | Contribution of printing parameters to the interfacial strength of polylactic acid (PLA) in material extrusion additive manufacturing. Progress in Additive Manufacturing, 2018, 3, 165-171.                                    | 4.8  | 30        |
| 17 | In-situ modification of cellulose nanofibrils by organosilanes during spray drying. Industrial Crops and Products, 2016, 93, 129-135.                                                                                           | 5.2  | 27        |
| 18 | Towards a cellulose-based society: opportunities and challenges. Cellulose, 2021, 28, 4511-4543.                                                                                                                                | 4.9  | 27        |

Lu Wang

| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Closed-loop recycling of polyamide12 powder from selective laser sintering into sustainable composites. Journal of Cleaner Production, 2018, 195, 765-772.                                                          | 9.3 | 24        |
| 20 | Thermal properties of spray-dried cellulose nanofibril-reinforced polypropylene composites from extrusion-based additive manufacturing. Journal of Thermal Analysis and Calorimetry, 2019, 136, 1069-1077.          | 3.6 | 22        |
| 21 | Pretreatment of lignocellulosic feedstocks for cellulose nanofibril production. Cellulose, 2022, 29, 4835-4876.                                                                                                     | 4.9 | 22        |
| 22 | Recycled Cardboard Containers as a Low Energy Source for Cellulose Nanofibrils and Their Use in<br>Poly( <scp>l</scp> -lactide) Nanocomposites. ACS Sustainable Chemistry and Engineering, 2021, 9,<br>13460-13470. | 6.7 | 14        |
| 23 | Transparent Multifunctional Cellulose Nanocrystal Films Prepared Using Trivalent Metal Ion<br>Exchange for Food Packaging. ACS Sustainable Chemistry and Engineering, 2022, 10, 9419-9430.                          | 6.7 | 14        |
| 24 | Elasto-Plastic Finite Element Modeling of Short Carbon Fiber Reinforced 3D Printed Acrylonitrile<br>Butadiene Styrene Composites. Jom, 2020, 72, 475-484.                                                           | 1.9 | 12        |
| 25 | Comparing mechanical properties of impact modified polypropylene-copolymer (IMPP) from injection molding (IM) and fused layer modeling (FLM) processes. Rapid Prototyping Journal, 2020, 26, 993-1003.              | 3.2 | 6         |
| 26 | Are Foliar Fertilizers Beneficial to Growth and Yield of Wild Lowbush Blueberries?. Agronomy, 2022, 12, 470.                                                                                                        | 3.0 | 5         |
| 27 | Interactions of Cellulose Nanofibrils with a Foliar Fertilizer and Wild Blueberry Leaves: Potential to Enhance Fruit Yield. ACS Agricultural Science and Technology, 2022, 2, 712-718.                              | 2.3 | 3         |