Yongsheng Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2614112/publications.pdf Version: 2024-02-01

		993	849
375	65,150	114	244
papers	citations	h-index	g-index
383 all docs	383 docs citations	383 times ranked	55161 citing authors

#	Article	IF	CITATIONS
1	Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors. ACS Nano, 2008, 2, 463-470.	7.3	2,955
2	Solution Properties of Single-Walled Carbon Nanotubes. , 1998, 282, 95-98.		2,352
3	Supercapacitor Devices Based on Graphene Materials. Journal of Physical Chemistry C, 2009, 113, 13103-13107.	1.5	2,295
4	Organic and solution-processed tandem solar cells with 17.3% efficiency. Science, 2018, 361, 1094-1098.	6.0	2,262
5	Broadband and Tunable Highâ€Performance Microwave Absorption of an Ultralight and Highly Compressible Graphene Foam. Advanced Materials, 2015, 27, 2049-2053.	11.1	1,598
6	Molecular‣evel Dispersion of Graphene into Poly(vinyl alcohol) and Effective Reinforcement of their Nanocomposites. Advanced Functional Materials, 2009, 19, 2297-2302.	7.8	1,481
7	Mechanism of Photogenerated Reactive Oxygen Species and Correlation with the Antibacterial Properties of Engineered Metal-Oxide Nanoparticles. ACS Nano, 2012, 6, 5164-5173.	7.3	1,282
8	An Overview of the Applications of Grapheneâ€Based Materials in Supercapacitors. Small, 2012, 8, 1805-1834.	5.2	1,210
9	Electromagnetic interference shielding of graphene/epoxy composites. Carbon, 2009, 47, 922-925.	5.4	1,199
10	Electromagnetic Interference (EMI) Shielding of Single-Walled Carbon Nanotube Epoxy Composites. Nano Letters, 2006, 6, 1141-1145.	4.5	1,106
11	A Graphene Hybrid Material Covalently Functionalized with Porphyrin: Synthesis and Optical Limiting Property. Advanced Materials, 2009, 21, 1275-1279.	11.1	1,007
12	Superparamagnetic graphene oxide–Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. Journal of Materials Chemistry, 2009, 19, 2710.	6.7	963
13	Two-Dimensional Graphene Bridges Enhanced Photoinduced Charge Transport in Dye-Sensitized Solar Cells. ACS Nano, 2010, 4, 887-894.	7.3	925
14	High-Efficiency Loading and Controlled Release of Doxorubicin Hydrochloride on Graphene Oxide. Journal of Physical Chemistry C, 2008, 112, 17554-17558.	1.5	909
15	Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes. ACS Nano, 2010, 4, 43-48.	7.3	908
16	Nitrogenâ€Doped Mesoporous Carbon Promoted Chemical Adsorption of Sulfur and Fabrication of Highâ€Arealâ€Capacity Sulfur Cathode with Exceptional Cycling Stability for Lithiumâ€Sulfur Batteries. Advanced Functional Materials, 2014, 24, 1243-1250.	7.8	904
17	A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density. Energy and Environmental Science, 2013, 6, 1623.	15.6	875
18	Organic solar cells with solution-processed graphene transparent electrodes. Applied Physics Letters, 2008, 92, .	1.5	856

#	Article	IF	CITATIONS
19	Organic Photovoltaic Devices Based on a Novel Acceptor Material: Graphene. Advanced Materials, 2008, 20, 3924-3930.	11.1	805
20	A Series of Simple Oligomer-like Small Molecules Based on Oligothiophenes for Solution-Processed Solar Cells with High Efficiency. Journal of the American Chemical Society, 2015, 137, 3886-3893.	6.6	788
21	Small-molecule solar cells with efficiency over 9%. Nature Photonics, 2015, 9, 35-41.	15.6	769
22	Solution-Processed and High-Performance Organic Solar Cells Using Small Molecules with a Benzodithiophene Unit. Journal of the American Chemical Society, 2013, 135, 8484-8487.	6.6	675
23	Solution-Processed Organic Solar Cells Based on Dialkylthiol-Substituted Benzodithiophene Unit with Efficiency near 10%. Journal of the American Chemical Society, 2014, 136, 15529-15532.	6.6	670
24	Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites. Carbon, 2007, 45, 821-827.	5.4	665
25	High Performance Photovoltaic Applications Using Solution-Processed Small Molecules. Accounts of Chemical Research, 2013, 46, 2645-2655.	7.6	624
26	Silver Nanowire Percolation Network Soldered with Graphene Oxide at Room Temperature and Its Application for Fully Stretchable Polymer Light-Emitting Diodes. ACS Nano, 2014, 8, 1590-1600.	7.3	599
27	Room-Temperature Ferromagnetism of Graphene. Nano Letters, 2009, 9, 220-224.	4.5	595
28	Electrically, Chemically, and Photonically Powered Torsional and Tensile Actuation of Hybrid Carbon Nanotube Yarn Muscles. Science, 2012, 338, 928-932.	6.0	585
29	Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors. Scientific Reports, 2013, 3, 1408.	1.6	582
30	Small Molecules Based on Benzo[1,2-b:4,5-b′]dithiophene Unit for High-Performance Solution-Processed Organic Solar Cells. Journal of the American Chemical Society, 2012, 134, 16345-16351.	6.6	563
31	The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites. Carbon, 2007, 45, 1614-1621.	5.4	524
32	Stability of commercial metal oxide nanoparticles in water. Water Research, 2008, 42, 2204-2212.	5.3	519
33	Graphene-Based Standalone Solar Energy Converter for Water Desalination and Purification. ACS Nano, 2018, 12, 829-835.	7.3	519
34	Solution-processed organic tandem solar cells with power conversion efficiencies >12%. Nature Photonics, 2017, 11, 85-90.	15.6	510
35	Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function and pH-sensitivity. Journal of Materials Chemistry, 2011, 21, 3448-3454.	6.7	496
36	Polymer Photovoltaic Cells Based on Solutionâ€Processable Graphene and P3HT. Advanced Functional Materials, 2009, 19, 894-904.	7.8	470

#	Article	IF	CITATIONS
37	Small-Molecule Acceptor Based on the Heptacyclic Benzodi(cyclopentadithiophene) Unit for Highly Efficient Nonfullerene Organic Solar Cells. Journal of the American Chemical Society, 2017, 139, 4929-4934.	6.6	459
38	Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero Poisson's ratio. Nature Communications, 2015, 6, 6141.	5.8	458
39	Grapheneâ€Based Materials for Lithiumâ€Ion Hybrid Supercapacitors. Advanced Materials, 2015, 27, 5296-5308.	11.1	424
40	Modeling the Primary Size Effects of Citrate-Coated Silver Nanoparticles on Their Ion Release Kinetics. Environmental Science & Technology, 2011, 45, 4422-4428.	4.6	418
41	Size-controlled synthesis of graphene oxide sheets on a large scale using chemical exfoliation. Carbon, 2009, 47, 3365-3368.	5.4	414
42	Composition and structure control of ultralight graphene foam for high-performance microwave absorption. Carbon, 2016, 105, 438-447.	5.4	400
43	Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors. Nano Research, 2011, 4, 675-684.	5.8	397
44	Two-Dimensional Ruddlesden–Popper Perovskite with Nanorod-like Morphology for Solar Cells with Efficiency Exceeding 15%. Journal of the American Chemical Society, 2018, 140, 11639-11646.	6.6	397
45	Flexible and Transparent Electrothermal Film Heaters Based on Graphene Materials. Small, 2011, 7, 3186-3192.	5.2	371
46	Sulfur-Infiltrated Graphene-Based Layered Porous Carbon Cathodes for High-Performance Lithium–Sulfur Batteries. ACS Nano, 2014, 8, 5208-5215.	7.3	368
47	A Highâ€Performance Graphene Oxideâ€Doped Ion Gel as Gel Polymer Electrolyte for Allâ€Solidâ€State Supercapacitor Applications. Advanced Functional Materials, 2013, 23, 3353-3360.	7.8	356
48	Infrared-Triggered Actuators from Graphene-Based Nanocomposites. Journal of Physical Chemistry C, 2009, 113, 9921-9927.	1.5	355
49	Preventing Graphene Sheets from Restacking for High-Capacitance Performance. Journal of Physical Chemistry C, 2011, 115, 23192-23197.	1.5	349
50	Recent progress in organic solar cells (Part I material science). Science China Chemistry, 2022, 65, 224-268.	4.2	349
51	One‣tep Hydrothermal Synthesis of 2D Hexagonal Nanoplates of αâ€Fe ₂ O ₃ /Graphene Composites with Enhanced Photocatalytic Activity. Advanced Functional Materials, 2014, 24, 5719-5727.	7.8	331
52	Acceptor–donor–acceptor type molecules for high performance organic photovoltaics – chemistry and mechanism. Chemical Society Reviews, 2020, 49, 2828-2842.	18.7	326
53	Microwave Absorption of Single-Walled Carbon Nanotubes/Soluble Cross-Linked Polyurethane Composites. Journal of Physical Chemistry C, 2007, 111, 13696-13700.	1.5	324
54	A hybrid material of graphene and poly (3,4-ethyldioxythiophene) with high conductivity, flexibility, and transparency. Nano Research, 2009, 2, 343-348.	5.8	320

#	Article	IF	CITATIONS
55	Bioinspired Ultrasensitive and Stretchable MXene-Based Strain Sensor via Nacre-Mimetic Microscale "Brick-and-Mortar―Architecture. ACS Nano, 2019, 13, 649-659.	7.3	320
56	Focusing on Energy and Optoelectronic Applications: A Journey for Graphene and Graphene Oxide at Large Scale. Accounts of Chemical Research, 2012, 45, 598-607.	7.6	310
57	Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes. Applied Physics Letters, 2009, 94, .	1.5	304
58	Solution Processable Rhodanineâ€Based Small Molecule Organic Photovoltaic Cells with a Power Conversion Efficiency of 6.1%. Advanced Energy Materials, 2012, 2, 74-77.	10.2	303
59	Delivery of Telomerase Reverse Transcriptase Small Interfering RNA in Complex with Positively Charged Single-Walled Carbon Nanotubes Suppresses Tumor Growth. Clinical Cancer Research, 2006, 12, 4933-4939.	3.2	300
60	Synergistically assembled MWCNT/graphene foam with highly efficient microwave absorption in both C and X bands. Carbon, 2017, 124, 506-514.	5.4	297
61	Controlling the Effective Surface Area and Pore Size Distribution of sp ² Carbon Materials and Their Impact on the Capacitance Performance of These Materials. Journal of the American Chemical Society, 2013, 135, 5921-5929.	6.6	291
62	A New Nonfullerene Electron Acceptor with a Ladder Type Backbone for Highâ€Performance Organic Solar Cells. Advanced Materials, 2017, 29, 1604964.	11.1	289
63	Multichannel and Repeatable Selfâ€Healing of Mechanical Enhanced Grapheneâ€Thermoplastic Polyurethane Composites. Advanced Materials, 2013, 25, 2224-2228.	11.1	280
64	Three-dimensional graphene networks: synthesis, properties and applications. National Science Review, 2015, 2, 40-53.	4.6	276
65	Highâ€Performance Solar Cells using a Solutionâ€Processed Small Molecule Containing Benzodithiophene Unit. Advanced Materials, 2011, 23, 5387-5391.	11.1	271
66	Efficient and large-scale synthesis of few-layered graphene using an arc-discharge method and conductivity studies of the resulting films. Nano Research, 2010, 3, 661-669.	5.8	269
67	Carbon science in 2016: Status, challenges and perspectives. Carbon, 2016, 98, 708-732.	5.4	261
68	Flexible organic photovoltaics based on water-processed silver nanowire electrodes. Nature Electronics, 2019, 2, 513-520.	13.1	255
69	Plasmonic Ti ₃ C ₂ T _{<i>x</i>} MXene Enables Highly Efficient Photothermal Conversion for Healable and Transparent Wearable Device. ACS Nano, 2019, 13, 8124-8134.	7.3	247
70	Photogeneration of Reactive Oxygen Species on Uncoated Silver, Gold, Nickel, and Silicon Nanoparticles and Their Antibacterial Effects. Langmuir, 2013, 29, 4647-4651.	1.6	244
71	Graphene – A Promising Material for Organic Photovoltaic Cells. Advanced Materials, 2011, 23, 5342-5358.	11.1	242
72	Spin oated Small Molecules for High Performance Solar Cells. Advanced Energy Materials, 2011, 1, 771-775.	10.2	233

#	Article	IF	CITATIONS
73	Ultraâ€Broadband Wideâ€Angle Terahertz Absorption Properties of 3D Graphene Foam. Advanced Functional Materials, 2018, 28, 1704363.	7.8	223
74	A Rapid and Efficient Selfâ€Healing Thermoâ€Reversible Elastomer Crosslinked with Graphene Oxide. Advanced Materials, 2013, 25, 5785-5790.	11.1	221
75	A Hierarchical Silverâ€Nanowire–Graphene Host Enabling Ultrahigh Rates and Superior Longâ€Term Cycling of Lithiumâ€Metal Composite Anodes. Advanced Materials, 2018, 30, e1804165.	11.1	221
76	Synthesis, characterization and optical limiting property of covalently oligothiophene-functionalized graphene material. Carbon, 2009, 47, 3113-3121.	5.4	218
77	A MXeneâ€Based Hierarchical Design Enabling Highly Efficient and Stable Solarâ€Water Desalination with Good Salt Resistance. Advanced Functional Materials, 2020, 30, 2007110.	7.8	215
78	Fineâ€Tuning the Energy Levels of a Nonfullerene Smallâ€Molecule Acceptor to Achieve a High Shortâ€Circuit Current and a Power Conversion Efficiency over 12% in Organic Solar Cells. Advanced Materials, 2018, 30, 1704904.	11.1	214
79	Covalently porphyrin-functionalized single-walled carbon nanotubes: a novel photoactive and optical limiting donor–acceptor nanohybrid. Journal of Materials Chemistry, 2006, 16, 3021-3030.	6.7	211
80	A Planar Small Molecule with Dithienosilole Core for High Efficiency Solution-Processed Organic Photovoltaic Cells. Chemistry of Materials, 2011, 23, 4666-4668.	3.2	210
81	A chlorinated low-bandgap small-molecule acceptor for organic solar cells with 14.1% efficiency and low energy loss. Science China Chemistry, 2018, 61, 1307-1313.	4.2	210
82	Highly Efficient and Stable Solar Cells Based on Crystalline Oriented 2D/3D Hybrid Perovskite. Advanced Materials, 2019, 31, e1901242.	11.1	210
83	Grapheneâ€Based Materials toward Microwave and Terahertz Absorbing Stealth Technologies. Advanced Optical Materials, 2019, 7, 1801318.	3.6	208
84	Graphene-based Li-ion hybrid supercapacitors with ultrahigh performance. Nano Research, 2013, 6, 581-592.	5.8	204
85	Organic photovoltaic cells based on an acceptor of soluble graphene. Applied Physics Letters, 2008, 92, .	1.5	196
86	Highâ€Performance Supercapacitor Electrode Materials Prepared from Various Pollens. Small, 2013, 9, 1342-1347.	5.2	196
87	Macroscopic and direct light propulsion of bulk graphene material. Nature Photonics, 2015, 9, 471-476.	15.6	192
88	A–D–A small molecules for solution-processed organic photovoltaic cells. Chemical Communications, 2015, 51, 4936-4950.	2.2	188
89	Hydrous RuO ₂ â€Decorated MXene Coordinating with Silver Nanowire Inks Enabling Fully Printed Microâ€Supercapacitors with Extraordinary Volumetric Performance. Advanced Energy Materials, 2019, 9, 1803987.	10.2	188
90	Nonfullerene Tandem Organic Solar Cells with High Performance of 14.11%. Advanced Materials, 2018, 30. e1707508.	11.1	184

#	Article	IF	CITATIONS
91	Electrical Power From Nanotube and Graphene Electrochemical Thermal Energy Harvesters. Advanced Functional Materials, 2012, 22, 477-489.	7.8	180
92	A perylene diimide (PDI)-based small molecule with tetrahedral configuration as a non-fullerene acceptor for organic solar cells. Journal of Materials Chemistry C, 2015, 3, 4698-4705.	2.7	180
93	Synthesis and supercapacitor performance studies of N-doped graphene materials using o-phenylenediamine as the double-N precursor. Carbon, 2013, 63, 508-516.	5.4	179
94	Lowering Internal Friction of 0D–1D–2D Ternary Nanocompositeâ€Based Strain Sensor by Fullerene to Boost the Sensing Performance. Advanced Functional Materials, 2018, 28, 1800850.	7.8	179
95	Carbon Nanotube – Reduced Graphene Oxide Composites for Thermal Energy Harvesting Applications. Advanced Materials, 2013, 25, 6602-6606.	11.1	178
96	Flexible, Magnetic, and Electrically Conductive Graphene/Fe ₃ O ₄ Paper and Its Application for Magnetic-Controlled Switches. Journal of Physical Chemistry C, 2010, 114, 17465-17471.	1.5	176
97	Mesoporous activated carbon materials with ultrahigh mesopore volume and effective specific surface area for high performance supercapacitors. Carbon, 2017, 124, 64-71.	5.4	172
98	Electromechanical Actuators Based on Graphene and Graphene/Fe ₃ O ₄ Hybrid Paper. Advanced Functional Materials, 2011, 21, 3778-3784.	7.8	170
99	Synthesis and characterization of a graphene–C60 hybrid material. Carbon, 2009, 47, 334-337.	5.4	166
100	Subtle Balance Between Length Scale of Phase Separation and Domain Purification in Smallâ€Molecule Bulkâ€Heterojunction Blends under Solvent Vapor Treatment. Advanced Materials, 2015, 27, 6296-6302.	11.1	159
101	A Halogenation Strategy for over 12% Efficiency Nonfullerene Organic Solar Cells. Advanced Energy Materials, 2018, 8, 1702870.	10.2	159
102	Recent progress in organic solar cells (Part II device engineering). Science China Chemistry, 2022, 65, 1457-1497.	4.2	157
103	Controlled synthesis of few-layered graphene sheets on a large scale using chemical exfoliation. Carbon, 2010, 48, 2367-2371.	5.4	156
104	Highly Conducting MXene–Silver Nanowire Transparent Electrodes for Flexible Organic Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 25330-25337.	4.0	156
105	Evaluation of Solution-Processable Carbon-Based Electrodes for All-Carbon Solar Cells. ACS Nano, 2012, 6, 10384-10395.	7.3	154
106	Nonlinear optical properties of graphene-based materials. Science Bulletin, 2012, 57, 2971-2982.	1.7	144
107	A 2D covalent organic framework as a high-performance cathode material for lithium-ion batteries. Nano Energy, 2020, 70, 104498.	8.2	144
108	Ultrafast carrier dynamics and saturable absorption of solution-processable few-layered graphene oxide. Applied Physics Letters, 2011, 98, .	1.5	143

#	Article	IF	CITATIONS
109	Lowâ€Bandgap Porphyrins for Highly Efficient Organic Solar Cells: Materials, Morphology, and Applications. Advanced Materials, 2020, 32, e1906129.	11.1	143
110	Electromechanical Actuator with Controllable Motion, Fast Response Rate, and High-Frequency Resonance Based on Graphene and Polydiacetylene. ACS Nano, 2012, 6, 4508-4519.	7.3	141
111	An A-D-A Type Small-Molecule Electron Acceptor with End-Extended Conjugation for High Performance Organic Solar Cells. Chemistry of Materials, 2017, 29, 7908-7917.	3.2	139
112	The application of graphene based materials for actuators. Journal of Materials Chemistry, 2012, 22, 3671.	6.7	137
113	Phase Distribution and Carrier Dynamics in Multiple-Ring Aromatic Spacer-Based Two-Dimensional Ruddlesden–Popper Perovskite Solar Cells. ACS Nano, 2020, 14, 4871-4881.	7.3	126
114	Photoprompted Hot Electrons from Bulk Cross-Linked Graphene Materials and Their Efficient Catalysis for Atmospheric Ammonia Synthesis. ACS Nano, 2016, 10, 10507-10515.	7.3	125
115	Benzo[1,2-b:4,5-bâ€2]dithiophene (BDT)-based small molecules for solution processed organic solar cells. Journal of Materials Chemistry A, 2015, 3, 4765-4776.	5.2	117
116	Ultrasensitive Flow Sensing of a Single Cell Using Graphene-Based Optical Sensors. Nano Letters, 2014, 14, 3563-3569.	4.5	116
117	Evaluation of Electron Donor Materials for Solutionâ€Processed Organic Solar Cells via a Novel Figure of Merit. Advanced Energy Materials, 2017, 7, 1700465.	10.2	114
118	Direct and large scale electric arc discharge synthesis of boron and nitrogen doped single-walled carbon nanotubes and their electronic properties. Carbon, 2009, 47, 2112-2115.	5.4	113
119	Graphene quantum dots as the hole transport layer material for high-performance organic solar cells. Physical Chemistry Chemical Physics, 2013, 15, 18973.	1.3	113
120	Behavior and Potential Impacts of Metal-Based Engineered Nanoparticles in Aquatic Environments. Nanomaterials, 2017, 7, 21.	1.9	112
121	A New Nonfullerene Acceptor with Near Infrared Absorption for High Performance Ternaryâ€Blend Organic Solar Cells with Efficiency over 13%. Advanced Science, 2018, 5, 1800307.	5.6	111
122	Construction of a Fishâ€like Robot Based on High Performance Graphene/PVDF Bimorph Actuation Materials. Advanced Science, 2016, 3, 1500438.	5.6	106
123	Pyrolytic carbon-coated Si nanoparticles on elastic graphene framework as anode materials for high-performance lithium-ion batteries. Carbon, 2015, 82, 161-167.	5.4	105
124	A simple small molecule as an acceptor for fullerene-free organic solar cells with efficiency near 8%. Journal of Materials Chemistry A, 2016, 4, 10409-10413.	5.2	104
125	Efficient solution processed bulk-heterojunction solar cells based a donor–acceptor oligothiophene. Journal of Materials Chemistry, 2010, 20, 2464.	6.7	103
126	A high-performance all-solid-state supercapacitor with graphene-doped carbon material electrodes and a graphene oxide-doped ion gel electrolyte. Carbon, 2014, 72, 381-386.	5.4	103

#	Article	IF	CITATIONS
127	Polymer photovoltaic devices with transparent graphene electrodes produced by spin-casting. Carbon, 2010, 48, 3308-3311.	5.4	100
128	Mechanism of Enhanced Carbon Cathode Performance by Nitrogen Doping in Lithium–Sulfur Battery: An X-ray Absorption Spectroscopic Study. Journal of Physical Chemistry C, 2014, 118, 7765-7771.	1.5	99
129	Spacer Engineering Using Aromatic Formamidinium in 2D/3D Hybrid Perovskites for Highly Efficient Solar Cells. ACS Nano, 2021, 15, 7811-7820.	7.3	99
130	The preparation of functionalized graphene oxide for targeted intracellular delivery of siRNA. Journal of Materials Chemistry, 2012, 22, 6649.	6.7	98
131	A 3D cross-linked graphene-based honeycomb carbon composite withÂexcellent confinement effect of organic cathode material for lithium-ion batteries. Carbon, 2020, 157, 656-662.	5.4	98
132	Efficient small molecule bulk heterojunction solar cells with high fill factors via introduction of Ï€-stacking moieties as end group. Journal of Materials Chemistry A, 2013, 1, 1801-1809.	5.2	96
133	New Anthraceneâ€Fused Nonfullerene Acceptors for Highâ€Efficiency Organic Solar Cells: Energy Level Modulations Enabling Match of Donor and Acceptor. Advanced Energy Materials, 2019, 9, 1803541.	10.2	95
134	Efficient and thermally stable organic solar cells based on small molecule donor and polymer acceptor. Nature Communications, 2019, 10, 3271.	5.8	94
135	Consecutively Strong Absorption from Gigahertz to Terahertz Bands of a Monolithic Three-Dimensional Fe ₃ O ₄ /Graphene Material. ACS Applied Materials & Interfaces, 2019, 11, 1274-1282.	4.0	94
136	Nanoparticles Inhibit DNA Replication by Binding to DNA: Modeling and Experimental Validation. ACS Nano, 2013, 7, 9664-9674.	7.3	93
137	Size Effects on Adsorption of Hematite Nanoparticles on <i>E. coli</i> cells. Environmental Science & amp; Technology, 2011, 45, 2172-2178.	4.6	92
138	Dithienosilole-Based Small-Molecule Organic Solar Cells with an Efficiency over 8%: Investigation of the Relationship between the Molecular Structure and Photovoltaic Performance. Chemistry of Materials, 2015, 27, 6077-6084.	3.2	92
139	High-quality single-layer graphene via reparative reduction of graphene oxide. Nano Research, 2011, 4, 434-439.	5.8	91
140	Achieving an Efficient and Stable Morphology in Organic Solar Cells Via Fine-Tuning the Side Chains of Small-Molecule Acceptors. Chemistry of Materials, 2020, 32, 2593-2604.	3.2	91
141	Ternary Organic Solar Cells With 12.8% Efficiency Using Two Nonfullerene Acceptors With Complementary Absorptions. Advanced Energy Materials, 2018, 8, 1800424.	10.2	90
142	3D printing nanocomposite gel-based thick electrode enabling both high areal capacity and rate performance for lithium-ion battery. Chemical Engineering Journal, 2020, 381, 122641.	6.6	89
143	Highâ€Precision Twistâ€Controlled Bilayer and Trilayer Graphene. Advanced Materials, 2016, 28, 2563-2570.	11.1	87
144	Solution-processed bulk heterojunction organic solar cells based on an oligothiophene derivative. Applied Physics Letters, 2010, 97, .	1.5	86

#	Article	IF	CITATIONS
145	Ionic Dopant-Free Polymer Alloy Hole Transport Materials for High-Performance Perovskite Solar Cells. Journal of the American Chemical Society, 2022, 144, 9500-9509.	6.6	85
146	Super-elasticity of three-dimensionally cross-linked graphene materials all the way to deep cryogenic temperatures. Science Advances, 2019, 5, eaav2589.	4.7	84
147	An Acceptor–Donor–Acceptor Structured Small Molecule for Effective NIR Triggered Dual Phototherapy of Cancer. Advanced Functional Materials, 2020, 30, 1910301.	7.8	82
148	In situ synthesis of graphene/single-walled carbon nanotube hybrid material by arc-discharge and its application in supercapacitors. Nano Energy, 2012, 1, 820-827.	8.2	81
149	Photoconductivity of Bulkâ€Filmâ€Based Graphene Sheets. Small, 2009, 5, 1682-1687.	5.2	80
150	A carbon science perspective in 2018: Current achievements and future challenges. Carbon, 2018, 132, 785-801.	5.4	80
151	Fullerene-free small molecule organic solar cells with a high open circuit voltage of 1.15 V. Chemical Communications, 2016, 52, 465-468.	2.2	79
152	Pushing detectability and sensitivity for subtle force to new limits with shrinkable nanochannel structured aerogel. Nature Communications, 2022, 13, 1119.	5.8	79
153	Lowing the energy loss of organic solar cells by molecular packing engineering via multiple molecular conjugation extension. Science China Chemistry, 2022, 65, 1362-1373.	4.2	79
154	Compressible Highly Stable 3D Porous MXene/GO Foam with a Tunable High-Performance Stealth Property in the Terahertz Band. ACS Applied Materials & Interfaces, 2019, 11, 25369-25377.	4.0	78
155	The production of horizontally aligned single-walled carbon nanotubes. Carbon, 2011, 49, 4098-4110.	5.4	77
156	Highâ€Performance Allâ€&mallâ€Molecule Solar Cells Based on a New Type of Small Molecule Acceptors with Chlorinated End Groups. Advanced Energy Materials, 2018, 8, 1802021.	10.2	76
157	New small-molecule acceptors based on hexacyclic naphthalene(cyclopentadithiophene) for efficient non-fullerene organic solar cells. Journal of Materials Chemistry A, 2017, 5, 17204-17210.	5.2	75
158	Polymeric Graphene Bulk Materials with a 3D Cross‣inked Monolithic Graphene Network. Advanced Materials, 2019, 31, e1802403.	11.1	74
159	Excellent cycling stability with high SnO2 loading on a three-dimensional graphene network for lithium ion batteries. Carbon, 2016, 102, 32-38.	5.4	73
160	Achieving Both Enhanced Voltage and Current through Fine‶uning Molecular Backbone and Morphology Control in Organic Solar Cells. Advanced Energy Materials, 2019, 9, 1901024.	10.2	73
161	Synthesis and properties of acceptor–donor–acceptor molecules based on oligothiophenes with tunable and low band gap. Tetrahedron, 2009, 65, 5209-5215.	1.0	71
162	Small Molecules Based on Alkyl/Alkylthio-thieno[3,2- <i>b</i>]thiophene-Substituted Benzo[1,2- <i>b</i> :4,5-bâ€2]dithiophene for Solution-Processed Solar Cells with High Performance. Chemistry of Materials, 2015, 27, 8414-8423.	3.2	71

#	Article	IF	CITATIONS
163	Recent progress of cathode materials for aqueous zinc-ion capacitors: Carbon-based materials and beyond. Carbon, 2021, 185, 126-151.	5.4	71
164	Effect of thermal annealing on active layer morphology and performance for small molecule bulk heterojunction organic solar cells. Journal of Materials Chemistry C, 2014, 2, 7247-7255.	2.7	70
165	Fabrication and Evaluation of Solution-Processed Reduced Graphene Oxide Electrodes for p- and n-Channel Bottom-Contact Organic Thin-Film Transistors. ACS Nano, 2010, 4, 6343-6352.	7.3	69
166	Impact of dye end groups on acceptor–donor–acceptor type molecules for solution-processed photovoltaic cells. Journal of Materials Chemistry, 2012, 22, 9173.	6.7	69
167	High Performance Thickâ€Film Nonfullerene Organic Solar Cells with Efficiency over 10% and Active Layer Thickness of 600 nm. Advanced Energy Materials, 2019, 9, 1902688.	10.2	69
168	Selective Tuning of the HOMO–LUMO Gap of Carbazoleâ€Based Donor–Acceptor–Donor Compounds toward Different Emission Colors. European Journal of Organic Chemistry, 2010, 2010, 1681-1687.	1.2	68
169	Small Molecule Acceptors with a Nonfused Architecture for High-Performance Organic Photovoltaics. Chemistry of Materials, 2019, 31, 904-911.	3.2	66
170	Aggregation kinetics of CeO2 nanoparticles in KCl and CaCl2 solutions: measurements and modeling. Journal of Nanoparticle Research, 2011, 13, 6483-6491.	0.8	65
171	Investigation of Quinquethiophene Derivatives with Different End Groups for High Open Circuit Voltage Solar Cells. Advanced Energy Materials, 2013, 3, 639-646.	10.2	65
172	Highly Reversible and Recyclable Absorption under Both Hydrophobic and Hydrophilic Conditions using a Reduced Bulk Graphene Oxide Material. Advanced Materials, 2016, 28, 3504-3509.	11.1	63
173	Fouling resistant nanocomposite cation exchange membrane with enhanced power generation for reverse electrodialysis. Journal of Membrane Science, 2016, 516, 162-171.	4.1	62
174	Integrated Perovskite/Bulkâ€Heterojunction Organic Solar Cells. Advanced Materials, 2020, 32, e1805843.	11.1	61
175	Grapheneâ€Based Composites Combining Both Excellent Terahertz Shielding and Stealth Performance. Advanced Optical Materials, 2018, 6, 1801165.	3.6	60
176	Highly Stretchable Carbon Nanotubes/Polymer Thermoelectric Fibers. Nano Letters, 2021, 21, 1047-1055.	4.5	60
177	Buffer Layer of PEDOT:PSS/Graphene Composite for Polymer Solar Cells. Journal of Nanoscience and Nanotechnology, 2010, 10, 1934-1938.	0.9	58
178	Nonfullerene Small Molecular Acceptors with a Three-Dimensional (3D) Structure for Organic Solar Cells. Chemistry of Materials, 2016, 28, 6770-6778.	3.2	57
179	Triperylene Hexaimides Based Allâ€5mallâ€Molecule Solar Cells with an Efficiency over 6% and Open Circuit Voltage of 1.04 V. Advanced Energy Materials, 2017, 7, 1601664.	10.2	57
180	A nitrogen-doped-carbon/ZnO modified Cu foam current collector for high-performance Li metal batteries. Journal of Materials Chemistry A, 2019, 7, 5712-5718.	5.2	57

#	Article	IF	CITATIONS
181	A Flexible and Highâ€Voltage Internal Tandem Supercapacitor Based on Grapheneâ€Based Porous Materials with Ultrahigh Energy Density. Small, 2014, 10, 2285-2292.	5.2	56
182	Synthesis of high quality single-walled carbon nanotubes at large scale by electric arc using metal compounds. Carbon, 2005, 43, 2020-2022.	5.4	55
183	Toward All-Carbon Electronics: Fabrication of Graphene-Based Flexible Electronic Circuits and Memory Cards Using Maskless Laser Direct Writing. ACS Applied Materials & Interfaces, 2010, 2, 3310-3317.	4.0	55
184	A high-performance photovoltaic small molecule developed by modifying the chemical structure and optimizing the morphology of the active layer. RSC Advances, 2014, 4, 31977-31980.	1.7	54
185	Tailoring the oxygenated groups of graphene hydrogels for high-performance supercapacitors with large areal mass loadings. Journal of Materials Chemistry A, 2018, 6, 6587-6594.	5.2	54
186	The rational and effective design of nonfullerene acceptors guided by a semi-empirical model for an organic solar cell with an efficiency over 15%. Journal of Materials Chemistry A, 2020, 8, 9726-9732.	5.2	54
187	Characterization of oxygen containing functional groups on carbon materials with oxygen K-edge X-ray absorption near edge structure spectroscopy. Carbon, 2011, 49, 1745-1751.	5.4	53
188	Solution-processable graphene mesh transparent electrodes for organic solar cells. Nano Research, 2013, 6, 478-484.	5.8	53
189	Biomimetic printable nanocomposite for healable, ultrasensitive, stretchable and ultradurable strain sensor. Nano Energy, 2019, 63, 103898.	8.2	53
190	Oxidative dissolution of polymer-coated CdSe/ZnS quantum dots under UV irradiation: Mechanisms and kinetics. Environmental Pollution, 2012, 164, 259-266.	3.7	51
191	A high-performance ternary Si composite anode material with crystal graphite core and amorphous carbon shell. Journal of Power Sources, 2018, 384, 328-333.	4.0	51
192	Towards flexible all-carbon electronics: Flexible organic field-effect transistors and inverter circuits using solution-processed all-graphene source/drain/gate electrodes. Nano Research, 2010, 3, 714-721.	5.8	50
193	Monolithic 3D Cross-Linked Polymeric Graphene Materials and the Likes: Preparation and Their Redox Catalytic Applications. Journal of the American Chemical Society, 2018, 140, 11538-11550.	6.6	50
194	High activity of hot electrons from bulk 3D graphene materials for efficient photocatalytic hydrogen production. Nano Research, 2017, 10, 1662-1672.	5.8	49
195	Efficient non-fullerene organic solar cells employing sequentially deposited donor–acceptor layers. Journal of Materials Chemistry A, 2018, 6, 18225-18233.	5.2	49
196	Enhanced cycling stability of boron-doped lithium-rich layered oxide cathode materials by suppressing transition metal migration. Journal of Materials Chemistry A, 2019, 7, 3375-3383.	5.2	49
197	Alternative Nanostructures for Thermophones. ACS Nano, 2015, 9, 4743-4756.	7.3	48
198	A solution-processed high performance organic solar cell using a small molecule with the thieno[3,2-b]thiophene central unit. Chemical Communications, 2015, 51, 15268-15271.	2.2	48

#	Article	IF	CITATIONS
199	A Tandem Organic Solar Cell with PCE of 14.52% Employing Subcells with the Same Polymer Donor and Two Absorption Complementary Acceptors. Advanced Materials, 2019, 31, e1804723.	11.1	48
200	Chemical Design for Both Molecular and Morphology Optimization toward Highâ€Performance Lithiumâ€Ion Batteries Cathode Material Based on Covalent Organic Framework. Advanced Functional Materials, 2022, 32, 2107703.	7.8	47
201	A Phenanthrocarbazoleâ€Based Dopantâ€Free Holeâ€Transport Polymer with Noncovalent Conformational Locking for Efficient Perovskite Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	7.2	47
202	Noncovalent nanohybrid of ferrocene with single-walled carbon nanotubes and its enhanced electrochemical property. Chemical Physics Letters, 2006, 420, 416-420.	1.2	45
203	Facile and Scalable Fabrication of Wellâ€Aligned and Closely Packed Singleâ€Walled Carbon Nanotube Films on Various Substrates. Advanced Materials, 2010, 22, 3067-3070.	11.1	45
204	Tuning Morphology of Active Layer by using a Wide Bandgap Oligomerâ€Like Donor Enables Organic Solar Cells with Over 18% Efficiency. Advanced Energy Materials, 2022, 12, .	10.2	45
205	Evaluation of Small Molecules as Front Cell Donor Materials for Highâ€Efficiency Tandem Solar Cells. Advanced Materials, 2016, 28, 7008-7012.	11.1	43
206	In situ identification of the metallic state of Ag nanoclusters in oxidative dispersion. Nature Communications, 2021, 12, 1406.	5.8	42
207	Impact of the Electronâ€Transport Layer on the Performance of Solutionâ€Processed Smallâ€Molecule Organic Solar Cells. ChemSusChem, 2014, 7, 2358-2364.	3.6	40
208	A Direct C–H Coupling Method for Preparing ï€-Conjugated Functional Polymers with High Regioregularity. Macromolecules, 2018, 51, 379-388.	2.2	39
209	The synthesis of 5-alkyl[3,4-c]thienopyrrole-4,6-dione-based polymers using a Pd-catalyzed oxidative C–H/C–H homopolymerization reaction. Chemical Communications, 2014, 50, 12497-12499.	2.2	38
210	Fine-tuning the side-chains of non-fullerene small molecule acceptors to match with appropriate polymer donors. Journal of Materials Chemistry A, 2018, 6, 8586-8594.	5.2	38
211	Cholecystectomy as a risk factor of metabolic syndrome: from epidemiologic clues to biochemical mechanisms. Laboratory Investigation, 2018, 98, 7-14.	1.7	38
212	A general gelation strategy for 1D nanowires: dynamically stable functional gels for 3D printing flexible electronics. Nanoscale, 2018, 10, 20096-20107.	2.8	38
213	Cholesterol gallstone disease: focusing on the role of gallbladder. Laboratory Investigation, 2015, 95, 124-131.	1.7	37
214	Understanding the Halogenation Effects in Diketopyrrolopyrrole-Based Small Molecule Photovoltaics. ACS Applied Materials & Interfaces, 2015, 7, 19914-19922.	4.0	37
215	"Twisted―conjugated molecules as donor materials for efficient all-small-molecule organic solar cells processed with tetrahydrofuran. Journal of Materials Chemistry A, 2019, 7, 23008-23018.	5.2	37
216	Multi-functionalized single-walled carbon nanotubes as tumor cell targeting biological transporters. Journal of Nanoparticle Research, 2008, 10, 815-822.	0.8	36

#	Article	IF	CITATIONS
217	Sequentially Deposited versus Conventional Nonfullerene Organic Solar Cells: Interfacial Trap States, Vertical Stratification, and Exciton Dissociation. Advanced Energy Materials, 2019, 9, 1902145.	10.2	36
218	Achieving over 18 % Efficiency Organic Solar Cell Enabled by a ZnOâ€Based Hybrid Electron Transport Layer with an Operational Lifetime up to 5â€Years. Angewandte Chemie - International Edition, 2022, 61, .	7.2	36
219	Rollerballâ€Penâ€Drawing Technology for Extremely Foldable Paperâ€Based Electronics. Advanced Electronic Materials, 2017, 3, 1700098.	2.6	35
220	Highâ€Efficiency and Low Distortion Photoacoustic Effect in 3D Graphene Sponge. Advanced Functional Materials, 2018, 28, 1702652.	7.8	35
221	New Insights into the Correlation between Morphology, Excited State Dynamics, and Device Performance of Small Molecule Organic Solar Cells. Advanced Energy Materials, 2016, 6, 1600961.	10.2	34
222	Difference in formation of carbon cluster cations by laser ablation of graphene and graphene oxide. Journal of Mass Spectrometry, 2012, 47, 523-528.	0.7	32
223	Open-circuit voltage up to 1.07V for solution processed small molecule based organic solar cells. Organic Electronics, 2014, 15, 2285-2294.	1.4	32
224	Dynamic Agitationâ€Induced Centrifugal Purification of Nanowires Enabling Transparent Electrodes with 99.2% Transmittance. Advanced Functional Materials, 2018, 28, 1804479.	7.8	32
225	High performance Li-ion capacitor fabricated with dual graphene-based materials. Nanotechnology, 2021, 32, 015403.	1.3	32
226	Enhanced adsorption of aromatic chemicals on boron and nitrogen co-doped single-walled carbon nanotubes. Environmental Science: Nano, 2017, 4, 558-564.	2.2	31
227	Assessing the stability of high performance solution processed small molecule solar cells. Solar Energy Materials and Solar Cells, 2017, 161, 368-376.	3.0	31
228	Three dimensional cross-linked and flexible graphene composite paper with ultrafast electrothermal response at ultra-low voltage. Carbon, 2019, 154, 150-155.	5.4	31
229	A Water-Soluble Hybrid Material of Single-Walled Carbon Nanotubes with an Amphiphilic Poly(phenyleneethynylene): Preparation, Characterization, and Photovoltaic Properties. Journal of Nanoscience and Nanotechnology, 2007, 7, 2709-2718.	0.9	30
230	Imaging and Quantifying the Morphology and Nanoelectrical Properties of Quantum Dot Nanoparticles Interacting with DNA. Journal of Physical Chemistry C, 2011, 115, 599-606.	1.5	30
231	Cesium Halides-Assisted Crystal Growth of Perovskite Films for Efficient Planar Heterojunction Solar Cells. Chemistry of Materials, 2018, 30, 5264-5271.	3.2	30
232	Visible to Mid-Infrared Photodetection Based on Flexible 3D Graphene/Organic Hybrid Photodetector with Ultrahigh Responsivity at Ambient Conditions. ACS Photonics, 2022, 9, 59-67.	3.2	30
233	Multifunctional Superelastic Graphene-Based Thermoelectric Sponges for Wearable and Thermal Management Devices. Nano Letters, 2022, 22, 3417-3424.	4.5	30
234	Synthesis, Characterization and Nonlinear Optical Property of Graphene-C ₆₀ Hybrid. Journal of Nanoscience and Nanotechnology, 2009, 9, 5752-5756.	0.9	29

#	Article	IF	CITATIONS
235	Coordination of Graphene Oxide with Fe ₃ O ₄ Nanoparticles and Its Enhanced Optical Limiting Property. Journal of Nanoscience and Nanotechnology, 2010, 10, 2984-2987.	0.9	29
236	Photovoltage Enhancement in Twistedâ€Bilayer Graphene Using Surface Plasmon Resonance. Advanced Optical Materials, 2016, 4, 1703-1710.	3.6	29
237	A simple small molecule as the acceptor for fullerene-free organic solar cells. Science China Chemistry, 2017, 60, 366-369.	4.2	29
238	Design and synthesis of low band gap non-fullerene acceptors for organic solar cells with impressively high Jsc over 21 mA cm_2. Science China Materials, 2017, 60, 819-828.	3.5	29
239	Facile Synthesis of Carbonâ€Coated Li ₃ VO ₄ Anode Material and its Application in Full Cells. Energy Technology, 2018, 6, 2074-2081.	1.8	29
240	All-Small-Molecule Organic Solar Cells Based on Pentathiophene Donor and Alkylated Indacenodithiophene-Based Acceptors with Efficiency over 8%. ACS Applied Energy Materials, 2018, 1, 2150-2156.	2.5	29
241	Flexible Highâ€Performance and Solutionâ€Processed Organic Photovoltaics with Robust Mechanical Stability. Advanced Functional Materials, 2021, 31, 2010000.	7.8	29
242	Investigation of the enhanced performance and lifetime of organic solar cells using solution-processed carbon dots as the electron transport layers. Journal of Materials Chemistry C, 2015, 3, 12403-12409.	2.7	28
243	Small Molecules with Asymmetric 4-Alkyl-8-alkoxybenzo[1,2- <i>b</i> :4,5- <i>b</i> ′]dithiophene as the Central Unit for High-Performance Solar Cells with High Fill Factors. Chemistry of Materials, 2017, 29, 3694-3703.	3.2	28
244	Highly enhanced stability and efficiency for atmospheric ammonia photocatalysis by hot electrons from a graphene composite catalyst with Al2O3. Carbon, 2017, 124, 72-78.	5.4	28
245	Ultraviolet-to-microwave room-temperature photodetectors based on three-dimensional graphene foams. Photonics Research, 2020, 8, 368.	3.4	28
246	Pd-catalysed oxidative C–H/C–H coupling polymerization for polythiazole-based derivatives. Polymer, 2015, 68, 227-233.	1.8	27
247	A nonfullerene acceptor incorporating a dithienopyran fused backbone for organic solar cells with efficiency over 14%. Nano Energy, 2020, 75, 104988.	8.2	27
248	A 2D covalent organic framework with ultra-large interlayer distance as high-rate anode material for lithium-ion batteries. Nano Research, 2022, 15, 9779-9784.	5.8	27
249	Improved efficiency of solution processed small molecules organic solar cells using thermal annealing. Organic Electronics, 2013, 14, 1562-1569.	1.4	26
250	Investigation of the effect of large aromatic fusion in the small molecule backbone on the solar cell device fill factor. Journal of Materials Chemistry A, 2015, 3, 16679-16687.	5.2	26
251	A Neutral Stable and Soluble Polymer Radical with Low Band Gap and Its Photovoltaic Application. Macromolecules, 2008, 41, 501-503.	2.2	25
252	Synthesis of semiconducting SWNTs by arc discharge and their enhancement of water splitting performance with TiO2 photocatalyst. Carbon, 2011, 49, 5132-5141.	5.4	25

#	Article	lF	CITATIONS
253	Medium-Bandgap Small-Molecule Donors Compatible with Both Fullerene and Nonfullerene Acceptors. ACS Applied Materials & Interfaces, 2018, 10, 9587-9594.	4.0	25
254	Manipulating active layer morphology of molecular donor/polymer acceptor based organic solar cells through ternary blends. Science China Chemistry, 2018, 61, 1025-1033.	4.2	25
255	Visualizing the Vertical Energetic Landscape in Organic Photovoltaics. Joule, 2019, 3, 2513-2534.	11.7	25
256	Side chain engineering investigation of non-fullerene acceptors for photovoltaic device with efficiency over 15%. Science China Chemistry, 2020, 63, 1799-1806.	4.2	25
257	Novel donor–acceptor polymers based on 7-perfluorophenyl-6H-[1,2,5]thiadiazole[3,4-g]benzoimidazole for bulk heterojunction solar cells. RSC Advances, 2015, 5, 50137-50145.	1.7	24
258	Porous asphalt/graphene composite for supercapacitors with high energy density at superior power density without added conducting materials. Journal of Materials Chemistry A, 2017, 5, 21757-21764.	5.2	24
259	The synthesis of single-walled carbon nanotubes with controlled length and bundle size using the electric arc method. Carbon, 2006, 44, 1327-1330.	5.4	23
260	Functionalized graphene oxide based on p-phenylenediamine as spacers and nitrogen dopants for high performance supercapacitors. Science Bulletin, 2014, 59, 1809-1815.	1.7	23
261	A new oligobenzodithiophene end-capped with 3-ethyl-rhodanine groups for organic solar cells with high open-circuit voltage. Science China Chemistry, 2015, 58, 339-346.	4.2	23
262	Synergistic Modifications of Side Chains and End Groups in Small Molecular Acceptors for High Efficient Nonâ€Fullerene Organic Solar Cells. Solar Rrl, 2018, 2, 1800053.	3.1	23
263	An auxetic cellular structure as a universal design for enhanced piezoresistive sensitivity. Matter, 2022, 5, 1547-1562.	5.0	23
264	Different donor–acceptor structures of dithiafulvalene-fused semiconducting polymers with different band gaps. Chemical Communications, 2011, 47, 10401.	2.2	22
265	Theoretical investigation on two-dimensional non-traditional carbon materials employing three-membered ring and four-membered ring as building blocks. Carbon, 2015, 95, 1033-1038.	5.4	22
266	Developing high-performance small molecule organic solar cells via a large planar structure and an electron-withdrawing central unit. Chemical Communications, 2017, 53, 451-454.	2.2	22
267	High ampacity of superhelix graphene/copper nanocomposite wires by a synergistic growth-twisting-drawing strategy. Carbon, 2019, 141, 198-208.	5.4	22
268	Multifunctional Bicontinuous Composite Foams with Ultralow Percolation Thresholds. ACS Applied Materials & Interfaces, 2018, 10, 20806-20815.	4.0	21
269	Achieving organic solar cells with efficiency over 14% based on a non-fullerene acceptor incorporating a cyclopentathiophene unit fused backbone. Journal of Materials Chemistry A, 2020, 8, 5194-5199.	5.2	21
270	High-power instant-synthesis technology of carbon nanomaterials and nanocomposites. Nano Energy, 2021, 80, 105500.	8.2	21

#	Article	IF	CITATIONS
271	Allâ€5mallâ€Molecule Organic Solar Cells with Efficiency Approaching 16% and FF over 80%. Small, 2022, 18, e2201400.	5.2	21
272	Evolution of anisotropic-to-isotropic photoexcited carrier distribution in graphene. Physical Review B, 2014, 90, .	1.1	20
273	Impact of end-capped groups on the properties of dithienosilole-based small molecules for solution-processed organic solar cells. Dyes and Pigments, 2017, 147, 183-189.	2.0	20
274	An all small molecule organic solar cell based on a porphyrin donor and a non-fullerene acceptor with complementary and broad absorption. Dyes and Pigments, 2020, 176, 108250.	2.0	20
275	Functionalization of Graphene Oxide by Twoâ€Step Alkylation. Macromolecular Chemistry and Physics, 2012, 213, 1101-1106.	1.1	19
276	Impact of fluorinated end groups on the properties of acceptor–donor–acceptor type oligothiophenes for solution-processed photovoltaic cells. Journal of Materials Chemistry C, 2014, 2, 1337-1345.	2.7	19
277	Large active layer thickness toleration of high-efficiency small molecule solar cells. Journal of Materials Chemistry A, 2015, 3, 22274-22279.	5.2	19
278	Can Isotope Effects Enable Organic Solar Cells to Achieve Smaller Non-Radiative Energy Losses and Why?. Chemistry of Materials, 2022, 34, 6009-6025.	3.2	19
279	The Evidence for Fullerene Aggregation in Highâ€Performance Smallâ€Molecule Solar Cells by Molecular Dynamics Simulation. Advanced Electronic Materials, 2015, 1, 1500217.	2.6	18
280	Diketopyrrolopyrrole based small molecules with near infrared absorption for solution processed organic solar cells. Dyes and Pigments, 2016, 126, 173-178.	2.0	18
281	Molecular Origin of Donor- and Acceptor-Rich Domain Formation in Bulk-Heterojunction Solar Cells with an Enhanced Charge Transport Efficiency. Journal of Physical Chemistry C, 2017, 121, 5864-5870.	1.5	18
282	Substituents on the end group subtle tuning the energy levels and absorptions of small-molecule nonfullerene acceptors. Dyes and Pigments, 2018, 155, 241-248.	2.0	18
283	Data on high performance supercapacitors based on mesoporous activated carbon materials with ultrahigh mesopore volume and effective specific surface area. Data in Brief, 2018, 18, 1448-1456.	0.5	18
284	Concurrently Improved <i>J</i> _{sc} , Fill Factor, and Stability in a Ternary Organic Solar Cell Enabled by a C-Shaped Non-fullerene Acceptor and Its Structurally Similar Third Component. ACS Applied Materials & Interfaces, 2021, 13, 40766-40777.	4.0	18
285	Tandem organic solar cells with 18.67% efficiency <i>via</i> careful subcell design and selection. Journal of Materials Chemistry A, 2022, 10, 11238-11245.	5.2	18
286	Experimental determination of conduction and valence bands of semiconductor nanoparticles using Kelvin probe force microscopy. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	17
287	What are the practical limits for the specific surface area and capacitance of bulk sp2 carbon materials?. Science China Chemistry, 2016, 59, 225-230.	4.2	17
288	Towards predicting the power conversion efficiencies of organic solar cells from donor and acceptor molecule structures. Journal of Materials Chemistry C, 2018, 6, 3276-3287.	2.7	17

#	Article	IF	CITATIONS
289	A cyclopentadithiophene-bridged small molecule acceptor with near-infrared light absorption for efficient organic solar cells. Journal of Materials Chemistry C, 2019, 7, 4013-4019.	2.7	17
290	A Li-rich layered-spinel cathode material for high capacity and high rate lithium-ion batteries fabricated via a gas-solid reaction. Science China Materials, 2020, 63, 2435-2442.	3.5	17
291	Transparent and flexible multi-layer films with graphene recording layers for optical data storage. Applied Physics Letters, 2013, 102, .	1.5	16
292	The use of graphene oxide membranes for the softening of hard water. Science China Technological Sciences, 2014, 57, 284-287.	2.0	16
293	A series of dithienobenzodithiophene based small molecules for highly efficient organic solar cells. Science China Chemistry, 2017, 60, 552-560.	4.2	16
294	A Ceramicâ€Based Separator for Highâ€Temperature Supercapacitors. Energy Technology, 2018, 6, 306-311.	1.8	16
295	Subtle Morphology Control with Binary Additives for High-Efficiency Non-Fullerene Acceptor Organic Solar Cells. ACS Applied Materials & amp; Interfaces, 2020, 12, 27425-27432.	4.0	16
296	Dual effects from in-situ polymerized gel electrolyte and boric acid for ultra-long cycle-life Li metal batteries. Science China Materials, 2020, 63, 2344-2350.	3.5	16
297	Electrostatic Actuating Doubleâ€Unit Electrocaloric Cooling Device with High Efficiency. Advanced Energy Materials, 2021, 11, 2003771.	10.2	16
298	Dithienopyrrole Based Small Molecule with Low Band Gap for Organic Solar Cells. Chinese Journal of Chemistry, 2015, 33, 852-858.	2.6	15
299	Correlating Molecular Structures with Transport Dynamics in High-Efficiency Small-Molecule Organic Photovoltaics. ACS Applied Materials & Interfaces, 2015, 7, 13137-13141.	4.0	15
300	"Doping―pentacene with sp ² -phosphorus atoms: towards high performance ambipolar semiconductors. Physical Chemistry Chemical Physics, 2016, 18, 3173-3178.	1.3	15
301	An oxygen heterocycle-fused fluorene based non-fullerene acceptor for high efficiency organic solar cells. Materials Chemistry Frontiers, 2020, 4, 3594-3601.	3.2	15
302	All-Small-Molecule Organic Solar Cells Based on a Fluorinated Small Molecule Donor With High Open-Circuit Voltage of 1.07 V. Frontiers in Chemistry, 2020, 8, 329.	1.8	15
303	Super heating/cooling rate enabled by microwave shock on polymeric graphene foam for high performance Lithium–Sulfur batteries. Carbon, 2021, 173, 809-816.	5.4	15
304	Efficient photocatalytic H ₂ production using visible-light irradiation and (CuAg) <i>_x</i> In _{2<i>x</i>)sub>Zn_{2(1 ⒒ 2<i>x</i>)}S₂p with tunable band gaps. International Journal of Energy Research, 2014, 38, 1513-1521.}	ho zo cataly	yst s 4
305	Effects of inorganic electron donors in photocatalytic hydrogen production over Ru/(CuAg)0.15In0.3Zn1.4S2 under visible light irradiation. Journal of Renewable and Sustainable Energy, 2014, 6, 033131.	0.8	14
306	A free-standing laser energy converter based on energetic graphene oxide for enhanced photothermic ignition. Journal of Materials Chemistry A, 2018, 6, 13761-13768.	5.2	14

#	Article	IF	CITATIONS
307	Fluorination-modulated end units for high-performance non-fullerene acceptors based organic solar cells. Science China Materials, 2019, 62, 1210-1217.	3.5	14
308	Exploring ternary organic photovoltaics for the reduced nonradiative recombination and improved efficiency over 17.23% with a simple large-bandgap small molecular third component. Nano Research, 2022, 15, 3222-3229.	5.8	14
309	Noncovalent Functionalization of Single-Walled Carbon Nanotube by Porphyrin: Dispersion of Carbon Nanotubes in Water and Formation of Self-Assembly Donor-Acceptor Nanoensemble. Journal of Dispersion Science and Technology, 2009, 31, 57-61.	1.3	13
310	A small molecule with selenophene as the central block for high performance solution-processed organic solar cells. Organic Electronics, 2015, 19, 98-104.	1.4	13
311	Improving current and mitigating energy loss in ternary organic photovoltaics enabled by two well-compatible small molecule acceptors. Science China Chemistry, 2021, 64, 608-615.	4.2	13
312	A Novel Poly(aryleneethynylene) with Tetrathiafulvalene (TTF) Side Chains: Synthesis, Selfâ€Assembly, and Electroactive Property. Macromolecular Rapid Communications, 2008, 29, 719-723.	2.0	12
313	Enhancement of Performance and Mechanism Studies of All-Solution Processed Small-Molecule based Solar Cells with an Inverted Structure. ACS Applied Materials & Interfaces, 2015, 7, 21245-21253.	4.0	12
314	Alkylthio substituted thiophene modified benzodithiophene-based highly efficient photovoltaic small molecules. Organic Electronics, 2016, 28, 263-268.	1.4	12
315	Two Thieno[3,2―b]thiopheneâ€Based Small Molecules as Bifunctional Photoactive Materials for Organic Solar Cells. Solar Rrl, 2018, 2, 1700179.	3.1	12
316	An A2–ï€â€"A1–ï€â€"A2-type small molecule donor for high-performance organic solar cells. Journal of Materials Chemistry C, 2019, 7, 5381-5384.	2.7	12
317	A novel acceptor with a <i>N </i> , <i>N </i> -dialkyl thieno[3′,2′:2,3]indolo[7,6- <i>g </i>]thieno[3,2- <i>b </i>]indole (TITI) core for organic solar cells with a high fill factor of 0.75. Chemical Communications, 2020, 56, 751-753.	2.2	12
318	An acceptor–donor–acceptor type non-fullerene acceptor with an asymmetric backbone for high performance organic solar cells. Journal of Materials Chemistry C, 2020, 8, 6293-6298.	2.7	12
319	A robust, freeze-resistant and highly ion conductive ionogel electrolyte towards lithium metal batteries workable at â^'30 °C. Physical Chemistry Chemical Physics, 2021, 23, 6775-6782.	1.3	12
320	Tuning the Phase Separation by Thermal Annealing Enables High-Performance All-Small-Molecule Organic Solar Cells. Chemistry of Materials, 2022, 34, 3168-3177.	3.2	12
321	A novel nanohybrid of daunomycin and single-walled carbon nanotubes: photophysical properties and enhanced electrochemical activity. Biotechnology Letters, 2008, 30, 1031-1035.	1.1	11
322	Synthesis and Photovoltaic Properties of a Poly(2,7 arbazole) Derivative Based on Dithienosilole and Benzothiadiazole. Macromolecular Chemistry and Physics, 2011, 212, 1109-1114.	1.1	11
323	Organic radicals based on phenalenyl and verdazyl units. Tetrahedron Letters, 2011, 52, 3670-3673.	0.7	11
324	Effects of alkyl chains on intermolecular packing and device performance in small molecule based organic solar cells. Dyes and Pigments, 2017, 141, 262-268.	2.0	11

#	Article	IF	CITATIONS
325	3-Dimensional non-fullerene acceptors based on triptycene and perylene diimide for organic solar cells. Organic Electronics, 2017, 50, 458-465.	1.4	11
326	Efficient carbazole-based small-molecule organic solar cells with an improved fill factor. RSC Advances, 2018, 8, 4867-4871.	1.7	11
327	Highâ€Temperatureâ€Endurable, Flexible Supercapacitors: Performance and Degradation Mechanism. Energy Technology, 2018, 6, 161-170.	1.8	11
328	Microâ€Supercapacitors: Hydrous RuO 2 â€Decorated MXene Coordinating with Silver Nanowire Inks Enabling Fully Printed Microâ€Supercapacitors with Extraordinary Volumetric Performance (Adv.) Tj ETQq0 0 0 rg	gBTi¢Qverlo	ock110 Tf 50
329	Effect of Nitro-Substituted Ending Groups on the Photovoltaic Properties of Nonfullerene Acceptors. ACS Applied Materials & Interfaces, 2020, 12, 41861-41868.	4.0	11
330	Self-assembly based on heterotriangulene derivatives: from nanowires to microrods. New Journal of Chemistry, 2010, 34, 661.	1.4	10
331	Synthesis of neutral stable polyradicals and their application on photovoltaic devices. European Polymer Journal, 2011, 47, 1018-1030.	2.6	10
332	Design, synthesis and photophysical properties of A-D-A-D-A small molecules for photovoltaic application. Dyes and Pigments, 2015, 121, 99-108.	2.0	10
333	A-D-A-type small molecular acceptor with one hexyl-substituted thiophene as π bridge for fullerene-free organic solar cells. Science China Materials, 2017, 60, 49-56.	3.5	10
334	Gall bladder: The metabolic orchestrator. Diabetes/Metabolism Research and Reviews, 2019, 35, e3140.	1.7	10
335	A Low Reorganization Energy and Two-dimensional Acceptor with Four End Units for Organic Solar Cells with Low Eloss. Chinese Journal of Polymer Science (English Edition), 2022, 40, 921-927.	2.0	10
336	Achieving over 18 % Efficiency Organic Solar Cell Enabled by a ZnOâ€Based Hybrid Electron Transport Layer with an Operational Lifetime up to 5â€Years. Angewandte Chemie, 2022, 134, .	1.6	10
337	High-efficiency solution-processed small-molecule solar cells featuring gold nanoparticles. Journal of Materials Chemistry A, 2014, 2, 19988-19993.	5.2	9
338	Controlling and optimizing the morphology and microstructure of 3D interconnected activated carbons for high performance supercapacitors. Nanotechnology, 2021, 32, 085401.	1.3	9
339	Dithienosilole-based small molecule donors for efficient all-small-molecule organic solar cells. Dyes and Pigments, 2018, 158, 445-450.	2.0	8
340	Low-cost and scalable carbon bread used as an efficient solar steam generator with high performance for water desalination and purification. RSC Advances, 2021, 11, 8674-8681.	1.7	8
341	Highly Stretchable Shape Memory Self-Soldering Conductive Tape with Reversible Adhesion Switched by Temperature. Nano-Micro Letters, 2021, 13, 124.	14.4	8
342	Pyran-fused non-fullerene acceptor achieving 15.51% efficiency in organic solar cells. Organic Electronics, 2022, 106, 106541.	1.4	8

#	Article	lF	CITATIONS
343	Synthesis of New Conjugated CNPPV Derivatives Containing Different Lengths of Oligothiophene Units for Organic Solar Cells. Macromolecular Chemistry and Physics, 2010, 211, 2503-2509.	1.1	7
344	Isothianaphtheneâ€Based Conjugated Polymers for Organic Photovoltaic Cells. Macromolecular Chemistry and Physics, 2012, 213, 1596-1603.	1.1	7
345	Reply to 'Do thermal effects cause the propulsion of bulk graphene material?'. Nature Photonics, 2016, 10, 139-141.	15.6	7
346	The effects of the side-chain length of non-fullerene acceptors on their performance in all-small-molecule organic solar cells. Journal of Materials Chemistry C, 2022, 10, 8719-8727.	2.7	7
347	A Universal Method for the Preparation of Dual Network Reduced Graphene Oxide–Ceramic/Metal Foam Materials with Tunable Porosity and Improved Conductivity. Chemistry of Materials, 2018, 30, 8368-8374.	3.2	6
348	Structural optimization of acceptor molecules guided by a semi-empirical model for organic solar cells with efficiency over 15%. Science China Materials, 2021, 64, 2388-2396.	3.5	6
349	Molecular optimization of incorporating pyran fused acceptor–donor–acceptor type acceptors enables over 15% efficiency in organic solar cells. Journal of Materials Chemistry C, 2022, 10, 1977-1983.	2.7	6
350	Preparation and electrochemistry properties of trifunctional 1,9-dithiophenalenylium salt and its neutral radical with benzene spacer. Tetrahedron, 2013, 69, 6890-6896.	1.0	5
351	Bromination of Isothianaphthene Derivatives towards the Application in Organic Electronics. Chinese Journal of Chemistry, 2013, 31, 1391-1396.	2.6	5
352	Synthesis and aggregation-induced fluorescence emission properties of boron-containing derivatives that respond to viscous alcohols. New Journal of Chemistry, 2014, 38, 6088-6094.	1.4	5
353	Phosphorylation and subcellular localization of Na+/H+ exchanger isoform 3 (NHE3) are associated with altered gallbladder absorptive function after formation of cholesterol gallstones. Journal of Physiology and Biochemistry, 2017, 73, 133-139.	1.3	5
354	Unveiling the Molecular Symmetry Dependence of Exciton Dissociation Processes in Small-Molecular Heterojunctions. Journal of Physical Chemistry C, 2018, 122, 26851-26856.	1.5	5
355	Spirocyclic side chain of a non-fullerene acceptor enables efficient organic solar cells with reduced recombination loss and energetic disorder. RSC Advances, 2022, 12, 6573-6582.	1.7	5
356	Synthesis and Characterization of the Isolated Straight Polymer Chain Inside of Single-Walled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2010, 10, 5570-5575.	0.9	4
357	Altered absorptive function in the gall bladder during cholesterol gallstone formation is associated with abnormal NHE3 complex formation. Journal of Physiology and Biochemistry, 2020, 76, 427-435.	1.3	4
358	A privileged ternary blend enabling non-fullerene organic photovoltaics with over 14% efficiency. Journal of Materials Chemistry C, 2020, 8, 15135-15141.	2.7	4
359	Pyreneâ€Based Dopantâ€Free Holeâ€Transport Polymers with Fluorine Induced Favorable Molecular Stacking Enable Efficient Perovskite Solar Cells. Angewandte Chemie, 0, , .	1.6	4
360	Hot electron prompted highly efficient photocatalysis based on 3D graphene/non-precious metal nanoparticles. RSC Advances, 2020, 10, 42054-42061.	1.7	3

#	Article	IF	CITATIONS
361	Phenanthrocarbazoleâ€Based Dopantâ€Free Holeâ€Transport Polymer with Noncovalently Conformational Locking for Efficient Perovskite Solar Cells. Angewandte Chemie, 0, , .	1.6	3
362	Conjugated Extension of Non-Fullerene Acceptors Enables Efficient Organic Solar Cells with Optoelectronic Response over 1000 nm. ACS Applied Energy Materials, 2022, 5, 4664-4672.	2.5	3
363	Semiconducting Oligoâ€(Aryleneethynylene)s with Coplanarity of Main Chain and Tetrathiafulvalene (TTF) Side Chains: Synthesis, Selfâ€Assembly, and Conductive Properties. Macromolecular Chemistry and Physics, 2009, 210, 1044-1051.	1.1	2
364	Synthesis and properties of copolymers based on 5,6-dinitrobenzothiadiazole with low band gap and broad absorption spectra. Science China Chemistry, 2011, 54, 617-624.	4.2	1
365	Periodic microstructures fabricated by multiplex interfering femtosecond laser beams on graphene sheet. International Journal of Nanomanufacturing, 2012, 8, 221.	0.3	1
366	Organic Solar Cells: Sequentially Deposited versus Conventional Nonfullerene Organic Solar Cells: Interfacial Trap States, Vertical Stratification, and Exciton Dissociation (Adv. Energy Mater. 47/2019). Advanced Energy Materials, 2019, 9, 1970185.	10.2	1
367	Thiophenes and Their Benzo Derivatives: Applications. , 2022, , 613-652.		1
368	Ternary bulk heterojunction organic photovoltaic cell. , 2008, , .		0
369	Graphene for Transparent Electrodes and Organic Electronic Devices. Green Energy and Technology, 2013, , 81-102.	0.4	0
370	Processability: Evaluation of Electron Donor Materials for Solutionâ€Processed Organic Solar Cells via a Novel Figure of Merit (Adv. Energy Mater. 18/2017). Advanced Energy Materials, 2017, 7, .	10.2	0
371	Rubbery neat carbon aerogels. Science China Chemistry, 2018, 61, 971-972.	4.2	0
372	Fred Wudl. A giant in π-conjugated materials. Materials Chemistry Frontiers, 2020, 4, 3398-3399.	3.2	0
373	Integrated Optoelectronics: Integrated Perovskite/Bulkâ€Heterojunction Organic Solar Cells (Adv.) Tj ETQq1 1 0.	.784314 r 11.1	gBT /Overlock
374	Finely modulated asymmetric nonfullerene acceptors enabling simultaneously improved voltage and current for efficient organic solar cells. Journal of Materials Chemistry C, 0, , .	2.7	0
375	Silver nanowire flexible transparent electrode toward commercialization. Science China Chemistry, 0, , .	4.2	0