Jerome Canivet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2613896/publications.pdf Version: 2024-02-01

LEDOME CANIVET

#	Article	IF	CITATIONS
1	Water adsorption in MOFs: fundamentals and applications. Chemical Society Reviews, 2014, 43, 5594-5617.	38.1	1,094
2	Nickel-Catalyzed Biaryl Coupling of Heteroarenes and Aryl Halides/Triflates. Organic Letters, 2009, 11, 1733-1736.	4.6	293
3	Structure–property relationships of water adsorption in metal–organic frameworks. New Journal of Chemistry, 2014, 38, 3102-3111.	2.8	252
4	MOF-Supported Selective Ethylene Dimerization Single-Site Catalysts through One-Pot Postsynthetic Modification. Journal of the American Chemical Society, 2013, 135, 4195-4198.	13.7	231
5	Nickelâ€Catalyzed CH Arylation of Azoles with Haloarenes: Scope, Mechanism, and Applications to the Synthesis of Bioactive Molecules. Chemistry - A European Journal, 2011, 17, 10113-10122.	3.3	187
6	Origin of highly active metal–organic framework catalysts: defects? Defects!. Dalton Transactions, 2016, 45, 4090-4099.	3.3	183
7	Photocatalytic Carbon Dioxide Reduction with Rhodiumâ€based Catalysts in Solution and Heterogenized within Metal–Organic Frameworks. ChemSusChem, 2015, 8, 603-608.	6.8	177
8	Enantiopure Peptide-Functionalized Metal–Organic Frameworks. Journal of the American Chemical Society, 2015, 137, 9409-9416.	13.7	166
9	Dynamic Nuclear Polarization Enhanced Solidâ€State NMR Spectroscopy of Functionalized Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2012, 51, 123-127.	13.8	161
10	Engineering structured MOF at nano and macroscales for catalysis and separation. Journal of Materials Chemistry, 2011, 21, 7582.	6.7	140
11	Waterâ€Soluble Phenanthroline Complexes of Rhodium, Iridium and Ruthenium for the Regeneration of NADH in the Enzymatic Reduction of Ketones. European Journal of Inorganic Chemistry, 2007, 2007, 4736-4742.	2.0	135
12	Water-soluble arene ruthenium catalysts containing sulfonated diamine ligands for asymmetric transfer hydrogenation of α-aryl ketones and imines in aqueous solution. Green Chemistry, 2007, 9, 391-397.	9.0	135
13	Antimicrobial activity of cobalt imidazolate metal–organic frameworks. Chemosphere, 2014, 113, 188-192.	8.2	126
14	Facile shaping of an imidazolate-based MOF on ceramic beads for adsorption and catalytic applications. Chemical Communications, 2010, 46, 7999.	4.1	115
15	Water-Soluble Arene Ruthenium Complexes Containing a trans-1,2-Diaminocyclohexane Ligand as Enantioselective Transfer Hydrogenation Catalysts in Aqueous Solution. European Journal of Inorganic Chemistry, 2005, 2005, 4493-4500.	2.0	112
16	Cationic arene ruthenium complexes containing chelating 1,10-phenanthroline ligands. Journal of Organometallic Chemistry, 2005, 690, 3202-3211.	1.8	108
17	Assessing Chemical Heterogeneity at the Nanoscale in Mixedâ€Ligand Metal–Organic Frameworks with the PTIR Technique. Angewandte Chemie - International Edition, 2014, 53, 2852-2856.	13.8	82
18	Mono and dinuclear rhodium, iridium and ruthenium complexes containing chelating 2,2′-bipyrimidine ligands: Synthesis, molecular structure, electrochemistry and catalytic properties. Journal of Organometallic Chemistry, 2007, 692, 3664-3675.	1.8	72

JEROME CANIVET

#	Article	IF	CITATIONS
19	Amino acid functionalized metal–organic frameworks by a soft coupling–deprotection sequence. Chemical Communications, 2011, 47, 11650.	4.1	68
20	Engineering the Environment of a Catalytic Metal–Organic Framework by Postsynthetic Hydrophobization. ChemCatChem, 2011, 3, 675-678.	3.7	67
21	Molecular Porous Photosystems Tailored for Longâ€Term Photocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2020, 59, 5116-5122.	13.8	60
22	Tuning the activity by controlling the wettability of MOF eggshell catalysts: A quantitative structure–activity study. Journal of Catalysis, 2011, 284, 207-214.	6.2	59
23	Systematic study of the impact of MOF densification into tablets on textural and mechanical properties. CrystEngComm, 2017, 19, 4211-4218.	2.6	58
24	Immobilization of a Full Photosystem in the Largeâ€Pore MILâ€101 Metal–Organic Framework for CO ₂ reduction. ChemSusChem, 2018, 11, 3315-3322.	6.8	57
25	Rhodium-Based Metal–Organic Polyhedra Assemblies for Selective CO ₂ Photoreduction. Journal of the American Chemical Society, 2022, 144, 3626-3636.	13.7	57
26	Enhanced formation of >C1 Products in Electroreduction of CO ₂ by Adding a CO ₂ Adsorption Component to a Gasâ€Diffusion Layerâ€Type Catalytic Electrode. ChemSusChem, 2017, 10, 4442-4446.	6.8	50
27	Hammett Parameter in Microporous Solids as Macroligands for Heterogenized Photocatalysts. ACS Catalysis, 2018, 8, 1653-1661.	11.2	50
28	Relating catalytic activity and electrochemical properties: The case of arene–ruthenium phenanthroline complexes catalytically active in transfer hydrogenation. Inorganica Chimica Acta, 2006, 359, 2369-2374.	2.4	46
29	Tailoring metal–organic framework catalysts by click chemistry. Dalton Transactions, 2012, 41, 3945.	3.3	40
30	Superstructure of a Substituted Zeolitic Imidazolate Metal–Organic Framework Determined by Combining Proton Solidâ€6tate NMR Spectroscopy and DFT Calculations. Angewandte Chemie - International Edition, 2015, 54, 5971-5976.	13.8	38
31	Regiospecificity in Ligand-Free Pd-Catalyzed C–H Arylation of Indoles: LiHMDS as Base and Transient Directing Group. ACS Catalysis, 2020, 10, 2713-2719.	11.2	32
32	A Simple and Nonâ€Destructive Method for Assessing the Incorporation of Bipyridine Dicarboxylates as Linkers within Metal–Organic Frameworks. Chemistry - A European Journal, 2016, 22, 3713-3718.	3.3	28
33	Molecular Level Characterization of the Structure and Interactions in Peptideâ€Functionalized Metal–Organic Frameworks. Chemistry - A European Journal, 2016, 22, 16531-16538.	3.3	27
34	Porous Macroligands: Materials for Heterogeneous Molecular Catalysis. ChemCatChem, 2020, 12, 1270-1275.	3.7	27
35	Enhanced Ligandâ€Based Luminescence in Metal–Organic Framework Sensor. ChemNanoMat, 2016, 2, 866-872.	2.8	26
36	Heterogenization of a Molecular Ni Catalyst within a Porous Macroligand for the Direct C–H Arylation of Heteroarenes. ACS Catalysis, 2021, 11, 3507-3515.	11.2	22

JEROME CANIVET

#	Article	IF	CITATIONS
37	Finding the Sweet Spot of Photocatalysis─A Case Study Using Bipyridine-Based CTFs. ACS Applied Materials & Interfaces, 2022, 14, 14182-14192.	8.0	22
38	Synthetic and computational assessment of a chiral metal–organic framework catalyst for predictive asymmetric transformation. Chemical Science, 2020, 11, 8800-8808.	7.4	21
39	Protection–deprotection Methods Applied to Metal–Organic Frameworks for the Design of Original Singleâ€6ite Catalysts. ChemCatChem, 2011, 3, 823-826.	3.7	19
40	A Pt/Al ₂ O ₃ -supported metal–organic framework film as the size-selective core–shell hydrogenation catalyst. Chemical Communications, 2016, 52, 7161-7163.	4.1	17
41	Cu-mediated solid-state reaction in a post-functionalized metal–organic framework. CrystEngComm, 2012, 14, 4105.	2.6	16
42	Molecular Porous Photosystems Tailored for Longâ€Term Photocatalytic CO 2 Reduction. Angewandte Chemie, 2020, 132, 5154-5160.	2.0	15
43	Microporous Polymers as Macroligands for Pentamethylcyclopentadienylrhodium Transferâ€Hydrogenation Catalysts. ChemCatChem, 2018, 10, 1778-1782.	3.7	14
44	An alternative pathway for the synthesis of isocyanato- and urea-functionalised metal–organic frameworks. Dalton Transactions, 2013, 42, 8249.	3.3	13
45	A series of chiral metal–organic frameworks based on fluorene di- and tetra-carboxylates: syntheses, crystal structures and luminescence properties. CrystEngComm, 2017, 19, 2042-2056.	2.6	11
46	Nickel-catalyzed and Li-mediated regiospecific C–H arylation of benzothiophenes. Green Chemistry, 2020, 22, 3155-3161.	9.0	11
47	Design of microporous mixed zinc–nickel triazolate metal–organic frameworks with functional ligands. CrystEngComm, 2013, 15, 9336.	2.6	10
48	Proline-functionalized metal–organic frameworks and their use in asymmetric catalysis: pitfalls in the MOFs rush. RSC Advances, 2015, 5, 11254-11256.	3.6	8
49	A Disruptive Innovation for Upgrading Methane to C3 Commodity Chemicals. Johnson Matthey Technology Review, 2021, 65, 311-329.	1.0	7
50	Di-μ-chloro-bis[(η6-benzene)chlororuthenium(II)] chloroform disolvate. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, m1090-m1091.	0.2	6
51	Sensitive Photoacoustic IR Spectroscopy for the Characterization of Amino/Azido Mixed‣inker Metal–Organic Frameworks. ChemPhysChem, 2017, 18, 2855-2858.	2.1	3
52	[(R,R)-2-Amino-1-(p-tolylsulfonylamido)cyclohexane-κ2N,Nâ€2]chloro(η5-pentamethylcyclopentadienyl)iridium(III) chloroform solvate. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, m2435-m2436.	0.2	1
53	Functional Linkers for Catalysis. , 2016, , 345-386.		1