Arkady Khoutorsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2613735/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Autism-related deficits via dysregulated elF4E-dependent translational control. Nature, 2013, 493, 371-377.	27.8	451
2	Targeting Adenosine Monophosphate-Activated Protein Kinase (AMPK) in Preclinical Models Reveals a Potential Mechanism for the Treatment of Neuropathic Pain. Molecular Pain, 2011, 7, 1744-8069-7-70.	2.1	189
3	Pharmacogenetic Inhibition of elF4E-Dependent Mmp9 mRNA Translation Reverses Fragile X Syndrome-like Phenotypes. Cell Reports, 2014, 9, 1742-1755.	6.4	174
4	Metformin ameliorates core deficits in a mouse model of fragile X syndrome. Nature Medicine, 2017, 23, 674-677.	30.7	164
5	Reactivation of stalled polyribosomes in synaptic plasticity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16205-16210.	7.1	149
6	The MNK–eIF4E Signaling Axis Contributes to Injury-Induced Nociceptive Plasticity and the Development of Chronic Pain. Journal of Neuroscience, 2017, 37, 7481-7499.	3.6	106
7	Nociceptor Translational Profiling Reveals the Ragulator-Rag GTPase Complex as a Critical Generator of Neuropathic Pain. Journal of Neuroscience, 2019, 39, 393-411.	3.6	95
8	Unique Interweaved Microtubule Scaffold Mediates Osmosensory Transduction via Physical Interaction with TRPV1. Neuron, 2014, 83, 866-878.	8.1	94
9	Translational Control Mechanisms in Persistent Pain. Trends in Neurosciences, 2018, 41, 100-114.	8.6	91
10	Epiregulin and EGFR interactions are involved in pain processing. Journal of Clinical Investigation, 2017, 127, 3353-3366.	8.2	85
11	mTORC1 inhibition induces pain via IRS-1-dependent feedback activation of ERK. Pain, 2013, 154, 1080-1091.	4.2	79
12	Control of Synaptic Plasticity and Memory via Suppression of Poly(A)-Binding Protein. Neuron, 2013, 78, 298-311.	8.1	65
13	Inhibition of Group I Metabotropic Glutamate Receptors Reverses Autistic-Like Phenotypes Caused by Deficiency of the Translation Repressor eIF4E Binding Protein 2. Journal of Neuroscience, 2015, 35, 11125-11132.	3.6	48
14	Translational profiling of dorsal root ganglia and spinal cord in a mouse model of neuropathic pain. Neurobiology of Pain (Cambridge, Mass), 2018, 4, 35-44.	2.5	45
15	Multifaceted Regulation of Somatic Cell Reprogramming by mRNA Translational Control. Cell Stem Cell, 2014, 14, 606-616.	11.1	39
16	elF4E-Dependent Translational Control: A Central Mechanism for Regulation of Pain Plasticity. Frontiers in Genetics, 2018, 9, 470.	2.3	39
17	elF2α phosphorylation controls thermal nociception. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11949-11954.	7.1	37
18	mTORC2 Balances AKT Activation and eIF2α Serine 51 Phosphorylation to Promote Survival under Stress. Molecular Cancer Research, 2015, 13, 1377-1388.	3.4	35

ARKADY KHOUTORSKY

#	Article	IF	CITATIONS
19	mTOR kinase is needed for the development and stabilization of dendritic arbors in newly born olfactory bulb neurons. Developmental Neurobiology, 2016, 76, 1308-1327.	3.0	35
20	Translational control of nociception via 4E-binding protein 1. ELife, 2015, 4, .	6.0	34
21	eIF4E Phosphorylation Influences Bdnf mRNA Translation in Mouse Dorsal Root Ganglion Neurons. Frontiers in Cellular Neuroscience, 2018, 12, 29.	3.7	33
22	Translational Control of Chronic Pain. Progress in Molecular Biology and Translational Science, 2015, 131, 185-213.	1.7	25
23	Dysregulation of translational control signaling in autism spectrum disorders. Cellular Signalling, 2020, 75, 109746.	3.6	10
24	4E-BP2–dependent translation in parvalbumin neurons controls epileptic seizure threshold. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	10
25	Monitoring translation in synaptic fractions using a ribosome profiling strategy. Journal of Neuroscience Methods, 2020, 329, 108456.	2.5	7
26	Intranasal insulin rescues repeated anesthesia-induced deficits in synaptic plasticity and memory and prevents apoptosis in neonatal mice via mTORC1. Scientific Reports, 2021, 11, 15490.	3.3	7
27	Uncovering memory-related gene expression in contextual fear conditioning using ribosome profiling. Progress in Neurobiology, 2021, 197, 101903.	5.7	6
28	4E-BP2-dependent translation in cerebellar Purkinje cells controls spatial memory but not autism-like behaviors. Cell Reports, 2021, 35, 109036.	6.4	2