
Arkady A Karyakin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2613626/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanozymes â€~artificial peroxidase' in reduction and detection of organic peroxides. Journal of Electroanalytical Chemistry, 2022, 904, 115902.	1.9	5
2	Application of Prussian Blue modified carbon electrodes for amperometric detection of amyloid-β peptides by flow injection analysis. Electrochimica Acta, 2022, 406, 139829.	2.6	4
3	Simultaneous monitoring of sweat lactate content and sweat secretion rate by wearable remote biosensors. Biosensors and Bioelectronics, 2022, 202, 113970.	5.3	38
4	Ultrastable Lactate Biosensor Linearly Responding in Whole Sweat for Noninvasive Monitoring of Hypoxia. Analytical Chemistry, 2022, 94, 9201-9207.	3.2	11
5	Catalytic Pathway of Nanozyme "Artificial Peroxidase―with 100-Fold Greater Bimolecular Rate Constants Compared to Those of the Enzyme. Journal of Physical Chemistry Letters, 2021, 12, 171-176.	2.1	15
6	Flow-electrochemical synthesis of Prussian Blue based nanozyme â€~artificial peroxidase'. Dalton Transactions, 2021, 50, 11385-11389.	1.6	10
7	Improved Electroactivity of Redox Probes onto Electropolymerized Azidomethyl-PEDOT: Enabling Click Chemistry for Advanced (Bio)Sensors. ACS Applied Polymer Materials, 2021, 3, 1518-1524.	2.0	10
8	Nanozymes "Artificial Peroxidase― Enzyme Oxidase Mixtures for Single‣tep Fabrication of Advanced Electrochemical Biosensors. ChemElectroChem, 2021, 8, 1117-1122.	1.7	10
9	Glucose biosensors for clinical and personal use. Electrochemistry Communications, 2021, 125, 106973.	2.3	26
10	Flow injection amperometry as an alternative to potentiometry for solid contact ion-selective membrane-based electrodes Electrochimica Acta, 2021, 377, 138074.	2.6	2
11	Advanced electrochemical detection of nitrogenous bases, synthetic oligonucleotides, and single-stranded DNA through flow injection analysis and catalytic oxidation on Prussian Blue. Electrochimica Acta, 2021, 378, 138119.	2.6	3
12	Core–Shell Nanozymes "Artificial Peroxidase― Stability with Superior Catalytic Properties. Journal of Physical Chemistry Letters, 2021, 12, 5547-5551.	2.1	16
13	Anchoring PQQ-Glucose Dehydrogenase with Electropolymerized Azines for the Most Efficient Bioelectrocatalysis. Analytical Chemistry, 2021, 93, 12116-12121.	3.2	4
14	Core-Shell Iron-Nickel Hexacyanoferrate Nanoparticle-Based Sensors for Hydrogen Peroxide Scavenging Activity. Chemosensors, 2021, 9, 344.	1.8	0
15	â€~Artificial peroxidase' nanozyme – enzyme based lactate biosensor. Talanta, 2020, 208, 120393.	2.9	45
16	Advanced electrochemical detection of amino acids and proteins through flow injection analysis and catalytic oxidation on Prussian Blue. Electrochimica Acta, 2020, 331, 135289.	2.6	27
17	Relationship Between Sweat and Blood Lactate Levels During Exhaustive Physical Exercise. ChemElectroChem, 2020, 7, 191-194.	1.7	50
18	Electrochemical and sensing properties of Prussian Blue based nanozymes "artificial peroxidase― Journal of Electroanalytical Chemistry, 2020, 872, 114048.	1.9	37

#	Article	IF	CITATIONS
19	Noninvasive monitoring of diabetes and hypoxia by wearable flow-through biosensors. Current Opinion in Electrochemistry, 2020, 23, 16-20.	2.5	19
20	Prussian Blue modified boron-doped diamond interfaces for advanced H2O2 electrochemical sensors. Electrochimica Acta, 2020, 339, 135924.	2.6	54
21	Wearable non-invasive monitors of diabetes and hypoxia through continuous analysis of sweat. Talanta, 2020, 215, 120922.	2.9	31
22	Power output of Prussian Blue based (bio)sensors as a function of analyte concentration: Towards wake-up signaling systems. Journal of Electroanalytical Chemistry, 2019, 847, 113263.	1.9	4
23	Prussian Blue based flow-through (bio)sensors in power generation mode: New horizons for electrochemical analyzers. Sensors and Actuators B: Chemical, 2019, 292, 284-288.	4.0	7
24	Constant Potential Amperometric Flow-Injection Analysis of Ions and Neutral Molecules Transduced by Electroactive (Conductive) Polymers. Analytical Chemistry, 2019, 91, 7495-7499.	3.2	11
25	Reagentless Impedimetric Sensors Based on Aminophenylboronic Acids. Journal of Analytical Chemistry, 2019, 74, 153-171.	0.4	5
26	Noninvasive Diabetes Monitoring through Continuous Analysis of Sweat Using Flow-Through Glucose Biosensor. Analytical Chemistry, 2019, 91, 3778-3783.	3.2	135
27	Reagentless Microsensor Based on Conducting Poly(3â€∎minophenylboronic Acid) for Rapid Detection of Microorganisms in Aerosol. Electroanalysis, 2018, 30, 602-606.	1.5	3
28	Power Generation versus Conventional Potentiostatic Operation of Prussian Blue Based (Bio)Sensors. Electroanalysis, 2018, 30, 607-610.	1.5	4
29	Prussian Blue-Based Thin-Layer Flow-Injection Multibiosensor for Simultaneous Determination of Glucose and Lactate. Moscow University Chemistry Bulletin, 2018, 73, 216-222.	0.2	2
30	Catalytically Synthesized Prussian Blue Nanoparticles Defeating Natural Enzyme Peroxidase. Journal of the American Chemical Society, 2018, 140, 11302-11307.	6.6	220
31	Communication—Accessing Stability of Oxidase-Based Biosensors via Stabilizing the Advanced H ₂ O ₂ Transducer. Journal of the Electrochemical Society, 2017, 164, B3056-B3058.	1.3	19
32	Molecular imprinting of boronate functionalized polyaniline for enzyme-free selective detection of saccharides and hydroxy acids. Sensors and Actuators B: Chemical, 2017, 246, 428-433.	4.0	18
33	Reply to Comment on "Can Nanoimpacts Detect Single-Enzyme Activity? Theoretical Considerations and an Experimental Study of Catalase Impacts― ACS Catalysis, 2017, 7, 3594-3596.	5.5	7
34	Electrochemical detection of Penicillium chrysogenum based on increasing conductivity of polyaminophenylboric acid. Russian Journal of Electrochemistry, 2017, 53, 92-96.	0.3	2
35	Noiseless Performance of Prussian Blue Based (Bio)sensors through Power Generation. Analytical Chemistry, 2017, 89, 6290-6294.	3.2	34
36	Electropolymerization of 2-aminophenylboronic acid and the use of the resulting polymer for determination of sugars and oxyacids. Russian Journal of Electrochemistry, 2017, 53, 312-317.	0.3	2

#	Article	IF	CITATIONS
37	Nonenzymatic Sensor for Lactate Detection in Human Sweat. Analytical Chemistry, 2017, 89, 11198-11202.	3.2	96
38	Non-invasive monitoring of diabetes through analysis of the exhaled breath condensate (aerosol). Electrochemistry Communications, 2017, 83, 81-84.	2.3	23
39	Advances of Prussian blue and its analogues in (bio)sensors. Current Opinion in Electrochemistry, 2017, 5, 92-98.	2.5	114
40	Scanning electrochemical microscopy: Visualization of local electrocatalytic activity of transition metals hexacyanoferrates. Russian Journal of Electrochemistry, 2016, 52, 1159-1165.	0.3	3
41	Estimation of continuity of electroactive inorganic films based on apparent anti-Ohmic trend in their charge transfer resistance. Electrochimica Acta, 2016, 219, 588-591.	2.6	11
42	Electrochemical Biosensor Powered by Pre oncentration: Improved Sensitivity and Selectivity towards Lactate. Electroanalysis, 2016, 28, 2389-2393.	1.5	7
43	Iron–nickel hexacyanoferrate bilayer as an advanced electrocatalyst for H ₂ O ₂ reduction. RSC Advances, 2016, 6, 103328-103331.	1.7	28
44	Can Nanoimpacts Detect Single-Enzyme Activity? Theoretical Considerations and an Experimental Study of Catalase Impacts. ACS Catalysis, 2016, 6, 8313-8320.	5.5	38
45	Novel Reagentless Labelâ€Free Detection Principle for Affinity Interactions Resulted in Conductivity Increase of Conducting Polymer. Electroanalysis, 2015, 27, 2055-2062.	1.5	10
46	Tuning electropolymerization of boronate-substituted anilines: Fluoride-free synthesis of the advanced affinity transducer. Electrochemistry Communications, 2015, 51, 121-124.	2.3	10
47	Guest Editorial:Electroanalysis: Full Coverage, Fully Online. Electroanalysis, 2014, 26, 2-3.	1.5	Ο
48	Noninvasive Hypoxia Monitor Based on Gene-Free Engineering of Lactate Oxidase for Analysis of Undiluted Sweat. Analytical Chemistry, 2014, 86, 5215-5219.	3.2	55
49	Iron triad-mate hexacyanoferrates as Prussian Blue stabilizers: Toward the advanced hydrogen peroxide transducer. Electrochimica Acta, 2014, 122, 173-179.	2.6	16
50	Reagentless Polyol Detection by Conductivity Increase in the Course of Self-Doping of Boronate-Substituted Polyaniline. Analytical Chemistry, 2014, 86, 11690-11695.	3.2	26
51	Rapid optimization of a lactate biosensor design using soft probes scanning electrochemical microscopy. Journal of Electroanalytical Chemistry, 2014, 731, 112-118.	1.9	16
52	Oxygen Reduction at Soft Interfaces Catalyzed by Inâ€Situâ€Generated Reduced Graphene Oxide. ChemElectroChem, 2014, 1, 59-63.	1.7	30
53	Transition Metal Hexacyanoferrates in Electrocatalysis of H ₂ O ₂ Reduction: An Exclusive Property of Prussian Blue. Analytical Chemistry, 2014, 86, 4131-4134.	3.2	103
54	Cholesterol Self-Powered Biosensor. Analytical Chemistry, 2014, 86, 9540-9547.	3.2	149

#	Article	IF	CITATIONS
55	Unsubstituted phenothiazine as a superior water-insoluble mediator for oxidases. Biosensors and Bioelectronics, 2014, 53, 275-282.	5.3	16
56	Hydrogen Peroxide Detection in Wet Air with a Prussian Blue Based Solid Salt Bridged Three Electrode System. Analytical Chemistry, 2013, 85, 2574-2577.	3.2	16
57	Enhanced hydrogen peroxide sensing based on Prussian Blue modified macroporous microelectrodes. Electrochemistry Communications, 2013, 29, 78-80.	2.3	45
58	Ultramicrosensors based on transition metal hexacyanoferrates for scanning electrochemical microscopy. Beilstein Journal of Nanotechnology, 2013, 4, 649-654.	1.5	7
59	Turning Cellulose Waste Into Electricity: Hydrogen Conversion by a Hydrogenase Electrode. PLoS ONE, 2013, 8, e83004.	1.1	4
60	Bioconversion of the cellulose containing waste into electricity through the intermediate hydrogen production. International Journal of Hydrogen Energy, 2012, 37, 10585-10589.	3.8	2
61	Principles of direct (mediator free) bioelectrocatalysis. Bioelectrochemistry, 2012, 88, 70-75.	2.4	62
62	Prussian Blue-modified ultramicroelectrodes for mapping hydrogen peroxide in scanning electrochemical microscopy (SECM). Electrochemistry Communications, 2012, 23, 102-105.	2.3	21
63	Purification and characterization of azurin from the methylamine-utilizing obligate methylotroph Methylobacillus flagellatus KT. Canadian Journal of Microbiology, 2012, 58, 516-522.	0.8	1
64	Reagentless Biosensor Based on Glucose Oxidase Wired by the Mediator Freely Diffusing in Enzyme Containing Membrane. Analytical Chemistry, 2012, 84, 1220-1223.	3.2	29
65	Composite materials based on Prussian Blue nanoparticles and polypyrrole for design of a highly stable sensor for hydrogen peroxide. Doklady Physical Chemistry, 2012, 444, 75-78.	0.2	5
66	Thank You for Making Electroanalysis So Successful. Electroanalysis, 2012, 24, 3-3.	1.5	0
67	Demonstration of hydrogenase electrode operation in a bioreactor. Enzyme and Microbial Technology, 2011, 49, 453-458.	1.6	7
68	Superstable Advanced Hydrogen Peroxide Transducer Based on Transition Metal Hexacyanoferrates. Analytical Chemistry, 2011, 83, 2359-2363.	3.2	120
69	Foundations of a technology for the microbiological conversion of organic cellulose-containing wastes into electrical energy through the intermediate formation of biohydrogen. Catalysis in Industry, 2011, 3, 47-52.	0.3	1
70	Thank you and very best wishes for 2011. Electroanalysis, 2011, 23, 3-3.	1.5	6
71	Electroanalysis in Russia and Belorussia. Electroanalysis, 2011, 23, 1049-1049.	1.5	0
72	Electrochemical polymerization of N-substituted pyrrols for the development of novel lactate biosensor. Moscow University Chemistry Bulletin, 2010, 65, 49-55.	0.2	2

5

#	Article	IF	CITATIONS
73	Relationship between Lactate Concentrations in Active Muscle Sweat and Whole Blood. Bulletin of Experimental Biology and Medicine, 2010, 150, 83-85.	0.3	130
74	lon Transport Across Liquid Liquid Interfacial Boundaries Monitored at Generatorâ€Collector Electrodes. Electroanalysis, 2010, 22, 2889-2896.	1.5	10
75	Coupled triple phase boundary processes: Liquid–liquid generator–collector electrodes. Electrochemistry Communications, 2010, 12, 455-458.	2.3	8
76	Improvement of enzyme electrocatalysis using substrate containing electroactive polymers. Towards limiting efficiencies of bioelectrocatalysis. Electrochimica Acta, 2010, 55, 7696-7700.	2.6	16
77	Catalase Activity of Cytochrome c Oxidase Assayed with Hydrogen Peroxide-Sensitive Electrode Microsensor. Biochemistry (Moscow), 2010, 75, 1352-1360.	0.7	12
78	Solâ^'Gel Immobilization of Lactate Oxidase from Organic Solvent: Toward the Advanced Lactate Biosensor. Analytical Chemistry, 2010, 82, 1601-1604.	3.2	72
79	Liquid Liquid Interface in Noncatalytic Biosensorics. ECS Meeting Abstracts, 2009, , .	0.0	0
80	Currentâ€Free Deposition of Prussian Blue with Organic Polymers: Towards Improved Stability and Mass Production of the Advanced Hydrogen Peroxide Transducer. Electroanalysis, 2009, 21, 409-414.	1.5	61
81	Improvement of direct bioelectrocatalysis by cellobiose dehydrogenase on screen printed graphite electrodes using polyaniline modification. Bioelectrochemistry, 2009, 76, 87-92.	2.4	22
82	Diffusion controlled analytical performances of hydrogen peroxide sensors: Towards the sensor with the largest dynamic range. Electrochimica Acta, 2009, 54, 5048-5052.	2.6	29
83	Improvement of hydrogenase enzyme activity by water-miscible organic solvents. Enzyme and Microbial Technology, 2009, 44, 329-333.	1.6	21
84	Kinetic approach for evaluation of total antioxidant activity. Talanta, 2009, 80, 749-753.	2.9	28
85	Protein extracting electrodes: Insights in the mechanism. Journal of Electroanalytical Chemistry, 2008, 623, 68-74.	1.9	17
86	Label-Free Detection of DNA Hybridization at a Liquid Liquid Interface. Analytical Chemistry, 2008, 80, 1336-1340.	3.2	28
87	Chemical and biological sensors based on electroactive inorganic polycrystals. , 2008, , 411-439.		7
88	Hydrogen Enzyme Electrodes with Limiting Performance Characteristics. ECS Meeting Abstracts, 2008, , .	0.0	0
89	Electrochemical Sensor with Record Performance Characteristics. Angewandte Chemie - International Edition, 2007, 46, 7678-7680.	7.2	70
90	The Limiting Performance Characteristics in Bioelectrocatalysis of Hydrogenase Enzymes. Angewandte Chemie - International Edition, 2007, 46, 7244-7246.	7.2	52

#	Article	IF	CITATIONS
91	Direct Bioelectrocatalysis by NADP-Reducing Hydrogenase fromPyrococcus furiosus. Electroanalysis, 2007, 19, 2264-2266.	1.5	8
92	Measuring the pH dependence of hydrogenase activities. Biochemistry (Moscow), 2007, 72, 968-973.	0.7	15
93	Determination of glucose and lactose in food products with the use of biosensors based on Berlin blue. Journal of Analytical Chemistry, 2007, 62, 388-393.	0.4	15
94	Tolerance to oxygen of hydrogen enzyme electrodes. Electrochemistry Communications, 2006, 8, 851-854.	2.3	34
95	Corrosion protection of steel by electropolymerized lignins. Electrochemistry Communications, 2006, 8, 60-64.	2.3	31
96	Hydrogenase electrodes for fuel cells. Biochemical Society Transactions, 2005, 33, 73-75.	1.6	59
97	New materials based on nanostructured Prussian blue for development of hydrogen peroxide sensors. Sensors and Actuators B: Chemical, 2005, 109, 167-170.	4.0	48
98	Electroactivity of redox-inactive proteins at liquid liquid interface. Journal of Electroanalytical Chemistry, 2005, 584, 110-116.	1.9	36
99	Postgenomic chemistry (IUPAC Technical Report). Pure and Applied Chemistry, 2005, 77, 1641-1654.	0.9	5
100	Prussian Blue Based Nanoelectrode Arrays for H2O2Detection. Analytical Chemistry, 2004, 76, 474-478.	3.2	307
101	Acetylcholinesterase sensors based on gold electrodes modified with dendrimer and polyaniline. Analytica Chimica Acta, 2004, 514, 79-88.	2.6	94
102	Electropolymerization of flavins and the properties of the resulting electroactive films. Electrochemistry Communications, 2004, 6, 120-125.	2.3	28
103	Thermodynamics of Ion Transfer Across the Liquid Liquid Interface at a Solid Electrode Shielded with a Thin Layer of Organic Solvent. Journal of Physical Chemistry B, 2004, 108, 11591-11595.	1.2	21
104	Electropolymerized Flavin Adenine Dinucleotide as an Advanced NADH Transducer. Analytical Chemistry, 2004, 76, 2004-2009.	3.2	49
105	Investigation of the Effect of Different Glassy Carbon Materials on the Performance of Prussian Blue Based Sensors for Hydrogen Peroxide. Electroanalysis, 2003, 15, 175-182.	1.5	26
106	Electroactivity of chemically synthesized polyaniline in neutral and alkaline aqueous solutions. Journal of Electroanalytical Chemistry, 2003, 544, 59-63.	1.9	90
107	Spontaneous and facilitated micelles formation at liquid liquid interface: towards amperometric detection of redox inactive proteins. Electrochemistry Communications, 2003, 5, 329-333.	2.3	40
108	Equilibrium (NAD+/NADH) potential on poly(Neutral Red) modified electrode. Electrochemistry Communications, 2003, 5, 677-680.	2.3	73

#	Article	IF	CITATIONS
109	Electrochemical transducers based on surfactant bilayers for the direct detection of affinity interactions. Biosensors and Bioelectronics, 2003, 18, 1031-1037.	5.3	22
110	New polyaniline-based potentiometric biosensor for pesticides detection. IEEE Sensors Journal, 2003, 3, 333-340.	2.4	27
111	Nonconducting polymers on Prussian Blue modified electrodes: improvement of selectivity and stability of the advanced H/sub 2/O/sub 2/ transducer. IEEE Sensors Journal, 2003, 3, 326-332.	2.4	29
112	Optimal Environment for Glucose Oxidase in Perfluorosulfonated Ionomer Membranes:Â Improvement of First-Generation Biosensors. Analytical Chemistry, 2002, 74, 1597-1603.	3.2	140
113	Hydrogen fuel electrode based on bioelectrocatalysis by the enzyme hydrogenase. Electrochemistry Communications, 2002, 4, 417-420.	2.3	59
114	Surfactant bilayers for the direct electrochemical detection of affinity interactions. Bioelectrochemistry, 2002, 56, 91-93.	2.4	25
115	Direct and electrically wired bioelectrocatalysis by hydrogenase from Thiocapsa roseopersicina. Bioelectrochemistry, 2002, 55, 169-171.	2.4	45
116	Polyaniline-modified cholinesterase sensor for pesticide determination. Bioelectrochemistry, 2002, 55, 75-77.	2.4	58
117	Bioelectrocatalytic hydrogen production by hydrogenase electrodes. International Journal of Hydrogen Energy, 2002, 27, 1501-1505.	3.8	45
118	Electrosynthesis of poly-o-diaminobenzene on the Prussian Blue modified electrodes for improvement of hydrogen peroxide transducer characteristics. Bioelectrochemistry, 2002, 55, 145-148.	2.4	43
119	Bioelectrocatalysis by Hydrogenase Th. Roseopersicina Immobilized on Carbon Materials. Russian Journal of Electrochemistry, 2002, 38, 97-102.	0.3	4
120	Evaluation of glucose biosensors based on Prussian Blue and lyophilised, crystalline and cross-linked glucose oxidases (CLEC®). Talanta, 2001, 54, 963-974.	2.9	68
121	Prussian Blue and Its Analogues: Electrochemistry and Analytical Applications. Electroanalysis, 2001, 13, 813-819.	1.5	814
122	Electroanalytical applications of Prussian Blue and its analogs. Russian Chemical Bulletin, 2001, 50, 1811-1817.	0.4	44
123	Prussian Blue and Its Analogues: Electrochemistry and Analytical Applications. , 2001, 13, 813.		1
124	Sensor for Hydrogen Peroxide Based on Prussian Blue Modified Electrode. Improvement of the Operational Stability Analytical Sciences, 2000, 16, 795-798.	0.8	78
125	Oriented Immobilization of Antibodies onto the Gold Surfaces via Their Native Thiol Groups. Analytical Chemistry, 2000, 72, 3805-3811.	3.2	183
126	Amperometric Biosensor for Glutamate Using Prussian Blue-Based "Artificial Peroxidase―as a Transducer for Hydrogen Peroxide. Analytical Chemistry, 2000, 72, 1720-1723.	3.2	402

#	Article	IF	CITATIONS
127	Development of biosensors based on hexacyanoferrates. Talanta, 2000, 52, 791-799.	2.9	118
128	On the mechanism of H2O2 reduction at Prussian Blue modified electrodes. Electrochemistry Communications, 1999, 1, 78-82.	2.3	235
129	Prussian Blue-based `artificial peroxidase' as a transducer for hydrogen peroxide detection. Application to biosensors. Sensors and Actuators B: Chemical, 1999, 57, 268-273.	4.0	258
130	Electropolymerized Azines: A New Group of Electroactive Polymers. Electroanalysis, 1999, 11, 149-155.	1.5	248
131	Electropolymerized Azines: Part II. In a Search of the Best Electrocatalyst of NADH Oxidation. Electroanalysis, 1999, 11, 553-557.	1.5	140
132	Self-Assembled Amphiphilic Bilayers of Surfactant Brij-52 on Gold Electrodes. Electroanalysis, 1999, 11, 1094-1097.	1.5	11
133	The improved potentiometric pH response of electrodes modified with processible polyaniline. Application to glucose biosensor. Analytical Communications, 1999, 36, 153-156.	2.2	40
134	PROCESSIBLE POLYANILINE AS AN ADVANCED POTENTIOMETRIC pH TRANSDUCER. APPLICATION TO BIOSENSORS. Analytical Chemistry, 1999, 71, 2534-2540.	3.2	149
135	The electrocatalytic activity of Prussian blue in hydrogen peroxide reduction studied using a wall-jet electrode with continuous flow. Journal of Electroanalytical Chemistry, 1998, 456, 97-104.	1.9	175
136	Non-aqueous enzymology approach for improvement of reagentless mediator-based glucose biosensorâ€. Analyst, The, 1998, 123, 1981-1985.	1.7	25
137	The improvement of polyaniline glucose biosensor stability using enzyme immobilization from water–organic mixtures with a high content of organic solvent. Sensors and Actuators B: Chemical, 1997, 44, 356-360.	4.0	16
138	Prussian-Blue-based amperometric biosensors in flow-injection analysis. Talanta, 1996, 43, 1597-1606.	2.9	172
139	Improvement of Electrochemical Biosensors Using Enzyme Immobilization from Waterâ^'Organic Mixtures with a High Content of Organic Solvent. Analytical Chemistry, 1996, 68, 4335-4341.	3.2	76
140	Potentiometric biosensors based on polyaniline semiconductor films. Sensors and Actuators B: Chemical, 1996, 33, 34-38.	4.0	101
141	The influence of defects in polyaniline structure on its electroactivity: optimization of â€~self-doped' polyaniline synthesis. Journal of Electroanalytical Chemistry, 1996, 402, 217-219.	1.9	83
142	Electropolymerization of phenothiazine, phenoxazine and phenazine derivatives: Characterization of the polymers by UV-visible difference spectroelectrochemistry and Fourier transform IR spectroscopy. Journal of Electroanalytical Chemistry, 1995, 395, 221-232.	1.9	142
143	Electroreduction of NAD+ to enzymatically active NADH at poly(neutral red) modified electrodes. Journal of Electroanalytical Chemistry, 1995, 399, 179-184.	1.9	152
144	Prussian Blue-Based First-Generation Biosensor. A Sensitive Amperometric Electrode for Glucose. Analytical Chemistry, 1995, 67, 2419-2423.	3.2	435

#	Article	IF	CITATIONS
145	New amperometric dehydrogenase electrodes based on electrocatalytic NADH-oxidation at poly (methylene blue)-modified electrodes. Electroanalysis, 1994, 6, 821-829.	1.5	143
146	Polypyrrole—Prussian Blue films with controlled level of doping: codeposition of polypyrrole and Prussian Blue. Journal of Electroanalytical Chemistry, 1994, 370, 301-303.	1.9	35
147	Self-doped polyanilines electrochemically active in neutral and basic aqueous solutions Journal of Electroanalytical Chemistry, 1994, 371, 259-265.	1.9	204
148	A High-Sensitive Glucose Amperometric Biosensor Based on Prussian Blue Modified Electrodes. Analytical Letters, 1994, 27, 2861-2869.	1.0	165
149	A Novel Potentiometric Glucose Biosensor Based on Polyaniline Semiconductor Films. Analytical Letters, 1994, 27, 2871-2882.	1.0	31
150	The electrochemical polymerization of methylene blue and bioelectrochemical activity of the resulting film. Bioelectrochemistry, 1993, 32, 35-43.	1.0	125
151	The electrochemical polymerization of Methylene Blue and bioelectrochemical activity of the resulting film. Synthetic Metals, 1993, 60, 289-292.	2.1	22
152	Bioelectrocatalysis: the electrochemical kinetics of hydrogenase action. Journal of Biotechnology, 1993, 27, 331-339.	1.9	26
153	Ferrocenes inside cyclodextrin cavities do not mediate the electron transport between glucose oxidase and an electrode. Bioelectrochemistry, 1990, 24, 257-262.	1.0	24
154	Ferrocenes inside cyclodextrin cavities do not mediate the electron transport between glucose oxidase and an electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 299, 257-262.	0.3	2
155	Catalytic Properties of Hydrogenases. Russian Chemical Reviews, 1986, 55, 867-882.	2.5	2
156	Mechanism of H2-electrooxidation with immobilized hydrogenase. Bioelectrochemistry, 1984, 12, 267-277.	1.0	63
157	Prussian Blue and Its Analogues: Electrochemistry and Analytical Applications. , 0, .		2
158	Pulmonary Oxidative Status in Norma and Pathologies on the Basis of Analysis of Exhaled Breath Condensate. American Journal of Biomedical Sciences, 0, , 365-372.	0.2	5