
Stefano Mottola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2613452/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Macro and micro structures of pebble-made cometary nuclei reconciled by seasonal evolution. Nature Astronomy, 2022, 6, 546-553.	4.2	20
2	Refinement of the convex shape model and tumbling spin state of (99942) Apophis using the 2020–2021 apparition data. Astronomy and Astrophysics, 2022, 661, L3.	2.1	7
3	Spectrophotometric Analysis of the Ryugu Rock Seen by MASCOT: Searching for a Carbonaceous Chondrite Analog. Planetary Science Journal, 2021, 2, 58.	1.5	7
4	Lucy Mission to the Trojan Asteroids: Science Goals. Planetary Science Journal, 2021, 2, 171.	1.5	54
5	The 2017 May 20 stellar occultation by the elongated centaur (95626) 2002 GZ32. Monthly Notices of the Royal Astronomical Society, 2021, 501, 6062-6075.	1.6	3
6	Detailed characterization of low activity comet 49P/Arend–Rigaux. Icarus, 2020, 338, 113532.	1.1	6
7	Nongravitational Effects of Cometary Activity. Space Science Reviews, 2020, 216, 1.	3.7	10
8	Study of the physical properties of selected active objects in the main belt and surrounding regions by broadband photometry. Astronomische Nachrichten, 2020, 341, 849-859.	0.6	7
9	Time evolution of dust deposits in the Hapi region of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2020, 636, A91.	2.1	13
10	Surface roughness of asteroid (162173) Ryugu and comet 67P/Churyumov–Gerasimenko inferred from <i>in situ</i> observations. Monthly Notices of the Royal Astronomical Society, 2020, 500, 3178-3193.	1.6	11
11	Near-perihelion activity of comet 67P/Churyumov–Gerasimenko. A first attempt of non-static analysis. Monthly Notices of the Royal Astronomical Society, 2020, 494, 3310-3316.	1.6	10
12	Global-scale brittle plastic rheology at the cometesimals merging of comet 67P/Churyumov–Gerasimenko. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10181-10187.	3.3	5
13	An orbital water-ice cycle on comet 67P from colour changes. Nature, 2020, 578, 49-52.	13.7	36
14	Convex Shape and Rotation Model of Lucy Target (11351) Leucus from Lightcurves and Occultations. Planetary Science Journal, 2020, 1, 73.	1.5	11
15	Surface Morphology of Comets and Associated Evolutionary Processes: A Review of Rosetta's Observations of 67P/Churyumov–Gerasimenko. Space Science Reviews, 2019, 215, 1.	3.7	28
16	Low thermal conductivity boulder with high porosity identified on C-type asteroid (162173) Ryugu. Nature Astronomy, 2019, 3, 971-976.	4.2	124
17	Spitzer Albedos of Near-Earth Objects. Astronomical Journal, 2019, 158, 67.	1.9	3
18	Images from the surface of asteroid Ryugu show rocks similar to carbonaceous chondrite meteorites. Science, 2019, 365, 817-820.	6.0	99

#	Article	IF	CITATIONS
19	Spectrophotometric modeling and mapping of Ceres. Icarus, 2019, 322, 144-167.	1.1	21
20	The changing temperature of the nucleus of comet 67P induced by morphological and seasonal effects. Nature Astronomy, 2019, 3, 649-658.	4.2	34
21	A comparison of multiple Rosetta data sets and 3D model calculations of 67P/Churyumov-Gerasimenko coma around equinox (May 2015). Icarus, 2019, 328, 104-126.	1.1	20
22	Multidisciplinary analysis of the Hapi region located on Comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2019, 485, 2139-2154.	1.6	9
23	Comet 67P/CG Nucleus Composition and Comparison to Other Comets. Space Science Reviews, 2019, 215, 1.	3.7	32
24	Bilobate comet morphology and internal structure controlled by shear deformation. Nature Geoscience, 2019, 12, 157-162.	5.4	22
25	Synthesis of the morphological description of cometary dust at comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2019, 630, A24.	2.1	100
26	Phase-curve analysis of comet 67P/Churyumov-Gerasimenko at small phase angles. Astronomy and Astrophysics, 2019, 630, A11.	2.1	1
27	Constraining models of activity on comet 67P/Churyumov-Gerasimenko with Rosetta trajectory, rotation, and water production measurements. Astronomy and Astrophysics, 2019, 630, A18.	2.1	18
28	Surface evolution of the Anhur region on comet 67P/Churyumov-Gerasimenko from high-resolution OSIRIS images. Astronomy and Astrophysics, 2019, 630, A13.	2.1	15
29	Diurnal variation of dust and gas production in comet 67P/Churyumov-Gerasimenko at the inbound equinox as seen by OSIRIS and VIRTIS-M on board Rosetta. Astronomy and Astrophysics, 2019, 630, A23.	2.1	9
30	Quantitative analysis of isolated boulder fields on comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2019, 630, A15.	2.1	4
31	Linking surface morphology, composition, and activity on the nucleus of 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2019, 630, A7.	2.1	18
32	The Rocky‣ike Behavior of Cometary Landslides on 67P/Churyumovâ€Gerasimenko. Geophysical Research Letters, 2019, 46, 14336-14346.	1.5	9
33	Influence of the Yarkovsky force on Jupiter Trojan asteroids. Astronomy and Astrophysics, 2019, 630, A148.	2.1	11
34	Studies of irregular satellites: I. Lightcurves and rotation periods of 25 Saturnian moons from Cassini observations. Icarus, 2019, 322, 80-102.	1.1	13
35	The refractory-to-ice mass ratio in comets. Monthly Notices of the Royal Astronomical Society, 2019, 482, 3326-3340.	1.6	59
36	Dawn mission's search for satellites of Ceres: Intact protoplanets don't have satellites. Icarus, 2018, 316, 191-204.	1.1	6

#	Article	IF	CITATIONS
37	The phase function and density of the dust observed at comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2018, 476, 2835-2839.	1.6	20
38	On deviations from free-radial outflow in the inner coma of comet 67P/Churyumov–Gerasimenko. Icarus, 2018, 311, 1-22.	1.1	21
39	Direct observations of asteroid interior and regolith structure: Science measurement requirements. Advances in Space Research, 2018, 62, 2141-2162.	1.2	54
40	Asteroid Ryugu before the Hayabusa2 encounter. Progress in Earth and Planetary Science, 2018, 5, .	1.1	39
41	Models of Rosetta/OSIRIS 67P Dust Coma Phase Function. Astronomical Journal, 2018, 156, 237.	1.9	20
42	Ceres' opposition effect observed by the Dawn framing camera. Astronomy and Astrophysics, 2018, 620, A201.	2.1	9
43	Thermal inertia and roughness of the nucleus of comet 67P/Churyumov–Gerasimenko from MIRO and VIRTIS observations. Astronomy and Astrophysics, 2018, 616, A122.	2.1	42
44	Tensile strength of 67P/Churyumov–Gerasimenko nucleus material from overhangs. Astronomy and Astrophysics, 2018, 611, A33.	2.1	40
45	Coma morphology of comet 67P controlled by insolation over irregular nucleus. Nature Astronomy, 2018, 2, 562-567.	4.2	19
46	Light Curves of Lucy Targets: Leucus and Polymele. Astronomical Journal, 2018, 155, 245.	1.9	13
47	Exposed bright features on the comet 67P/Churyumov–Gerasimenko: distribution and evolution. Astronomy and Astrophysics, 2018, 613, A36.	2.1	15
48	Geologic analysis of the Rosetta NavCam, Osiris and ROLIS images of the comet 67P/Churyumov-Gerasimenko nucleus. Planetary and Space Science, 2017, 137, 1-19.	0.9	7
49	Rosetta Lander - Philae: Operations on comet 67P/Churyumov-Gerasimenko, analysis of wake-up activities and final state. Acta Astronautica, 2017, 137, 38-43.	1.7	16
50	The Philae lander mission and science overview. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160248.	1.6	53
51	Resolved spectrophotometric properties of the Ceres surface from Dawn Framing Camera images. Icarus, 2017, 288, 201-225.	1.1	69
52	Surface changes on comet 67P/Churyumov-Gerasimenko suggest a more active past. Science, 2017, 355, 1392-1395.	6.0	63
53	The pristine interior of comet 67P revealed by the combined Aswan outburst and cliff collapse. Nature Astronomy, 2017, 1, .	4.2	100
54	Close-up images of the final Philae landing site on comet 67P/Churyumov-Gerasimenko acquired by the ROLIS camera. Icarus, 2017, 285, 263-274.	1.1	19

#	Article	IF	CITATIONS
55	The size, shape, density and ring of the dwarf planet Haumea from a stellar occultation. Nature, 2017, 550, 219-223.	13.7	179
56	Seasonal erosion and restoration of the dust cover on comet 67P/Churyumov-Gerasimenko as observed by OSIRIS onboard Rosetta. Astronomy and Astrophysics, 2017, 604, A114.	2.1	43
57	Comet 67P outbursts and quiescent coma at 1.3 au from the Sun: dust properties from Rosetta/VIRTIS-H observations. Monthly Notices of the Royal Astronomical Society, 2017, 469, S443-S458.	1.6	56
58	Constraints on cometary surface evolution derived from a statistical analysis of 67P's topography. Monthly Notices of the Royal Astronomical Society, 2017, 469, S329-S338.	1.6	33
59	The scattering phase function of comet 67P/Churyumov–Gerasimenko coma as seen from the Rosetta/OSIRIS instrument. Monthly Notices of the Royal Astronomical Society, 2017, 469, S404-S415.	1.6	44
60	Seasonal mass transfer on the nucleus of comet 67P/Chuyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 469, S357-S371.	1.6	111
61	Dust mass distribution around comet 67P/Churyumov–Gerasimenko determined via parallax measurements using Rosetta's OSIRIS cameras. Monthly Notices of the Royal Astronomical Society, 2017, 469, S276-S284.	1.6	43
62	The highly active Anhur–Bes regions in the 67P/Churyumov–Gerasimenko comet: results from OSIRIS/ROSETTA observations. Monthly Notices of the Royal Astronomical Society, 2017, 469, S93-S107.	1.6	30
63	Thermal modelling of water activity on comet 67P/Churyumov-Gerasimenko with global dust mantle and plural dust-to-ice ratio. Monthly Notices of the Royal Astronomical Society, 2017, 469, S295-S311.	1.6	39
64	Geomorphological and spectrophotometric analysis of Seth's circular niches on comet 67P/Churyumov–Gerasimenko using OSIRIS images. Monthly Notices of the Royal Astronomical Society, 2017, 469, S238-S251.	1.6	8
65	The Camera of the MASCOT Asteroid Lander on Board Hayabusa 2. Space Science Reviews, 2017, 208, 375-400.	3.7	46
66	Evidence of sub-surface energy storage in comet 67P from the outburst of 2016 July 03. Monthly Notices of the Royal Astronomical Society, 2017, 469, s606-s625.	1.6	45
67	The pebbles/boulders size distributions on Sais: Rosetta's final landing site on comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 469, S636-S645.	1.6	40
68	How pristine is the interior of the comet 67P/Churyumov–Gerasimenko?. Monthly Notices of the Royal Astronomical Society, 2017, 469, S685-S694.	1.6	22
69	Investigating the physical properties of outbursts on comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 469, S731-S740.	1.6	23
70	A three-dimensional modelling of the layered structure of comet 67P/Churyumov-Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 469, S741-S754.	1.6	22
71	Thermophysics of fractures on comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2017, 608, A121.	2.1	7
72	The global meter-level shape model of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2017, 607, L1.	2.1	107

#	Article	IF	CITATIONS
73	Photometric behaviour of 67P/Churyumov–Gerasimenko and analysis of its pre-perihelion diurnal variations. Monthly Notices of the Royal Astronomical Society, 2017, 469, S346-S356.	1.6	16
74	Cliffs versus plains: Can ROSINA/COPS and OSIRIS data of comet 67P/Churyumov-Gerasimenko in autumn 2014 constrain inhomogeneous outgassing?. Astronomy and Astrophysics, 2017, 605, A112.	2.1	26
75	Long-term survival of surface water ice on comet 67P. Monthly Notices of the Royal Astronomical Society, 2017, 469, S582-S597.	1.6	24
76	The southern hemisphere of 67P/Churyumov-Gerasimenko: Analysis of the preperihelion size-frequency distribution of boulders ≥7 m. Astronomy and Astrophysics, 2016, 592, L2.	2.1	27
77	Sunset jets observed on comet 67P/Churyumov-Gerasimenko sustained by subsurface thermal lag. Astronomy and Astrophysics, 2016, 586, A7.	2.1	55
78	Characterization of the Abydos region through OSIRIS high-resolution images in support of CIVA measurements. Astronomy and Astrophysics, 2016, 585, L1.	2.1	26
79	Summer fireworks on comet 67P. Monthly Notices of the Royal Astronomical Society, 2016, 462, S184-S194.	1.6	112
80	Are fractured cliffs the source of cometary dust jets? Insights from OSIRIS/Rosetta at 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2016, 587, A14.	2.1	102
81	Detection of exposed H ₂ O ice on the nucleus of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2016, 595, A102.	2.1	67
82	The dust environment of comet 67P/Churyumov-Gerasimenko from Rosetta OSIRIS and VLT observations in the 4.5 to 2.9 AU heliocentric distance range inbound. Astronomy and Astrophysics, 2016, 587, A155.	2.1	39
83	A mini outburst from the nightside of comet 67P/Churyumov-Gerasimenko observed by the OSIRIS camera on Rosetta. Astronomy and Astrophysics, 2016, 596, A89.	2.1	29
84	Aswan site on comet 67P/Churyumov-Gerasimenko: Morphology, boulder evolution, and spectrophotometry. Astronomy and Astrophysics, 2016, 592, A69.	2.1	53
85	Observations and analysis of a curved jet in the coma of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2016, 588, L3.	2.1	34
86	SURFACE ALBEDO AND SPECTRAL VARIABILITY OF CERES. Astrophysical Journal Letters, 2016, 817, L22.	3.0	42
87	The global shape, density and rotation of Comet 67P/Churyumov-Gerasimenko from preperihelion Rosetta/OSIRIS observations. Icarus, 2016, 277, 257-278.	1.1	252
88	EVOLUTION OF THE DUST SIZE DISTRIBUTION OF COMET 67P/CHURYUMOV–GERASIMENKO FROM 2.2 au TO PERIHELION. Astrophysical Journal, 2016, 821, 19.	1.6	158
89	Dawn arrives at Ceres: Exploration of a small, volatile-rich world. Science, 2016, 353, 1008-1010.	6.0	178
90	Estimating the strength of the nucleus material of comet 67P Churyumov–Gerasimenko. Solar System Research, 2016, 50, 225-234.	0.3	19

#	Article	IF	CITATIONS
91	Rosetta's comet 67P/Churyumov-Gerasimenko sheds its dusty mantle to reveal its icy nature. Science, 2016, 354, 1566-1570.	6.0	97
92	Seasonal exposure of carbon dioxide ice on the nucleus of comet 67P/Churyumov-Gerasimenko. Science, 2016, 354, 1563-1566.	6.0	61
93	The Agilkia boulders/pebbles size–frequency distributions: OSIRIS and ROLIS joint observations of 67P surface. Monthly Notices of the Royal Astronomical Society, 2016, 462, S242-S252.	1.6	15
94	The primordial nucleus of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2016, 592, A63.	2.1	159
95	Planning and implementation of the on-comet operations of the instrument SD2 onboard the lander Philae of Rosetta mission. Acta Astronautica, 2016, 125, 183-195.	1.7	19
96	Fission and reconfiguration of bilobate comets as revealed by 67P/Churyumov–Gerasimenko. Nature, 2016, 534, 352-355.	13.7	68
97	Exposed water ice on the nucleus of comet 67P/Churyumov–Gerasimenko. Nature, 2016, 529, 368-372.	13.7	104
98	Binary asteroid population. 3. Secondary rotations and elongations. Icarus, 2016, 267, 267-295.	1.1	76
99	Anatomy of outbursts and quiescent activity of Comet 29P/Schwassmann–Wachmann. Icarus, 2016, 272, 327-355.	1.1	27
100	The Camera of the MASCOT Asteroid Lander on Board Hayabusa 2. , 2016, , 375-400.		3
101	Variegation of comet 67P/Churyumov-Gerasimenko in regions showing activity. Astronomy and Astrophysics, 2016, 586, A80.	2.1	43
102	Shape model, reference system definition, and cartographic mapping standards for comet 67P/Churyumov-Gerasimenko – Stereo-photogrammetric analysis of Rosetta/OSIRIS image data. Astronomy and Astrophysics, 2015, 583, A33.	2.1	188
103	Photometric properties of comet 67P/Churyumov-Gerasimenko from VIRTIS-M onboard Rosetta. Astronomy and Astrophysics, 2015, 583, A31.	2.1	71
104	OSIRIS observations of meter-sized exposures of H ₂ 0 ice at the surface of 67P/Churyumov-Gerasimenko and interpretation using laboratory experiments. Astronomy and Astrophysics, 2015, 583, A25.	2.1	97
105	Redistribution of particles across the nucleus of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A17.	2.1	149
106	Insolation, erosion, and morphology of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A34.	2.1	173
107	Morphology and dynamics of the jets of comet 67P/Churyumov-Gerasimenko: Early-phase development. Astronomy and Astrophysics, 2015, 583, A11.	2.1	33
108	67P/Churyumov-Gerasimenko: Activity between March and June 2014 as observed from Rosetta/OSIRIS. Astronomy and Astrophysics, 2015, 573, A62.	2.1	60

#	Article	IF	CITATIONS
109	Spectrophotometric properties of the nucleus of comet 67P/Churyumov-Gerasimenko from the OSIRIS instrument onboard the ROSETTA spacecraft. Astronomy and Astrophysics, 2015, 583, A30.	2.1	188
110	Size-frequency distribution of boulders ≥7 m on comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A37.	2.1	108
111	Geomorphology and spectrophotometry of Philae's landing site on comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A41.	2.1	41
112	Temporal morphological changes in the Imhotep region of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A36.	2.1	60
113	Large-scale dust jets in the coma of 67P/Churyumov-Gerasimenko as seen by the OSIRIS instrument onboard Rosetta. Astronomy and Astrophysics, 2015, 583, A9.	2.1	39
114	The changing rotation period of comet 67P/Churyumov-Gerasimenko controlled by its activity. Astronomy and Astrophysics, 2015, 579, L5.	2.1	62
115	Ground-based transit observations of the HAT-P-18, HAT-P-19, HAT-P-27/WASP40 and WASP-21 systems. Monthly Notices of the Royal Astronomical Society, 2015, 451, 4060-4072.	1.6	38
116	Fractures on comet 67P/Churyumovâ€Gerasimenko observed by Rosetta/OSIRIS. Geophysical Research Letters, 2015, 42, 5170-5178.	1.5	71
117	Vesta's missing moons: Comprehensive search for natural satellites of Vesta by the Dawn spacecraft. Icarus, 2015, 257, 207-216.	1.1	9
118	The non-convex shape of (234) Barbara, the first Barbarian*. Monthly Notices of the Royal Astronomical Society, 2015, 448, 3382-3390.	1.6	12
119	Dust measurements in the coma of comet 67P/Churyumov-Gerasimenko inbound to the Sun. Science, 2015, 347, aaa3905.	6.0	310
120	On the nucleus structure and activity of comet 67P/Churyumov-Gerasimenko. Science, 2015, 347, aaa1044.	6.0	366
121	The morphological diversity of comet 67P/Churyumov-Gerasimenko. Science, 2015, 347, aaa0440.	6.0	259
122	The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta. Science, 2015, 347, aaa0628.	6.0	293
123	The landing(s) of Philae and inferences about comet surface mechanical properties. Science, 2015, 349, aaa9816.	6.0	212
124	The structure of the regolith on 67P/Churyumov-Gerasimenko from ROLIS descent imaging. Science, 2015, 349, aab0232.	6.0	86
125	67P/Churyumov-Gerasimenko surface properties as derived from CIVA panoramic images. Science, 2015, 349, aab0671.	6.0	47
126	Large heterogeneities in comet 67P as revealed by active pits from sinkhole collapse. Nature, 2015, 523, 63-66.	13.7	158

#	Article	IF	CITATIONS
127	Two independent and primitive envelopes of the bilobate nucleus of comet 67P. Nature, 2015, 526, 402-405.	13.7	141
128	The diurnal cycle of water ice on comet 67P/Churyumov–Gerasimenko. Nature, 2015, 525, 500-503.	13.7	199
129	Philae's First Days on the Comet. Science, 2015, 349, 493-493.	6.0	40
130	Variegation and space weathering on asteroid 21 Lutetia. Planetary and Space Science, 2015, 117, 236-245.	0.9	4
131	The small binary asteroid (939) Isberga. Icarus, 2015, 248, 516-525.	1.1	12
132	The binary near-Earth Asteroid (175706) 1996 FG3 — An observational constraint on its orbital evolution. Icarus, 2015, 245, 56-63.	1.1	35
133	Search for satellites near comet 67P/Churyumov-Gerasimenko using Rosetta/OSIRIS images. Astronomy and Astrophysics, 2015, 583, A19.	2.1	13
134	ROTATIONAL PROPERTIES OF THE MARIA ASTEROID FAMILY. Astronomical Journal, 2014, 147, 56.	1.9	6
135	In-flight calibration of the Dawn Framing Camera II: Flat fields and stray light correction. Icarus, 2014, 234, 99-108.	1.1	27
136	Small crater populations on Vesta. Planetary and Space Science, 2014, 103, 96-103.	0.9	54
137	The rotation state of 67P/Churyumov-Gerasimenko from approach observations with the OSIRIS cameras on Rosetta. Astronomy and Astrophysics, 2014, 569, L2.	2.1	81
138	Global photometric properties of Asteroid (4) Vesta observed with Dawn Framing Camera. Icarus, 2013, 226, 1252-1274.	1.1	68
139	Resolved photometry of Vesta reveals physical properties of crater regolith. Planetary and Space Science, 2013, 85, 198-213.	0.9	59
140	Probes to the inferior planets—A new dawn for NEO and IEO detection technology demonstration from heliocentric orbits interior to the earth's?. Acta Astronautica, 2013, 90, 129-145.	1.7	0
141	The Resolved Asteroid Program – Size, shape, and pole of (52) Europa. Icarus, 2013, 225, 794-805.	1.1	15
142	In-flight calibration of the Dawn Framing Camera. Icarus, 2013, 226, 1304-1317.	1.1	36
143	A space-based mission to characterize the IEO population. Acta Astronautica, 2013, 90, 33-40.	1.7	5
144	OUTGASSING BEHAVIOR OF C/2012 S1 (ISON) FROM 2011 SEPTEMBER TO 2013 JUNE. Astrophysical Journal Letters, 2013, 776, L20.	3.0	25

#	Article	IF	CITATIONS
145	CONSTRAINTS ON A SECOND PLANET IN THE WASP-3 SYSTEM. Astronomical Journal, 2013, 146, 147.	1.9	44
146	Photometric Properties of Vesta. Proceedings of the International Astronomical Union, 2012, 10, 179-179.	0.0	2
147	PANCHROMATIC OBSERVATIONS OF THE TEXTBOOK GRB 110205A: CONSTRAINING PHYSICAL MECHANISMS OF PROMPT EMISSION AND AFTERGLOW. Astrophysical Journal, 2012, 751, 90.	1.6	41
148	The representation of asteroid shapes: A test for the inversion of Gaia photometry. Planetary and Space Science, 2012, 73, 80-85.	0.9	16
149	Dawn at Vesta: Testing the Protoplanetary Paradigm. Science, 2012, 336, 684-686.	6.0	422
150	Vesta's Shape and Morphology. Science, 2012, 336, 687-690.	6.0	222
151	The Violent Collisional History of Asteroid 4 Vesta. Science, 2012, 336, 690-694.	6.0	209
152	Color and Albedo Heterogeneity of Vesta from Dawn. Science, 2012, 336, 700-704.	6.0	166
153	Photometric lightcurve and rotation period of Himalia (Jupiter VI). Icarus, 2012, 219, 741-742.	1.1	5
154	The cratering history of asteroid (21) Lutetia. Planetary and Space Science, 2012, 66, 87-95.	0.9	43
155	The northern hemisphere of asteroid (21) Lutetia—topography and orthoimages from Rosetta OSIRIS NAC image data. Planetary and Space Science, 2012, 66, 54-63.	0.9	36
156	ROTATIONAL PROPERTIES OF JUPITER TROJANS. I. LIGHT CURVES OF 80 OBJECTS. Astronomical Journal, 2011, 141, 170.	1.9	43
157	The Dawn Framing Camera. Space Science Reviews, 2011, 163, 263-327.	3.7	248
158	The Dawn Topography Investigation. Space Science Reviews, 2011, 163, 487-510.	3.7	44
159	Radiometric considerations for the detection of space debris with an optical sensor in LEO as a secondary goal of the AsteroidFinder mission. Acta Astronautica, 2011, 69, 297-306.	1.7	9
160	A Pluto-like radius and a high albedo for the dwarf planet Eris from an occultation. Nature, 2011, 478, 493-496.	13.7	156
161	The Surface Composition and Temperature of Asteroid 21 Lutetia As Observed by Rosetta/VIRTIS. Science, 2011, 334, 492-494.	6.0	110
162	The Dawn Framing Camera. , 2011, , 263-327.		10

The Dawn Framing Camera. , 2011, , 263-327. 162

#	Article	IF	CITATIONS
163	The cratering history of asteroid (2867) Steins. Planetary and Space Science, 2010, 58, 1116-1123.	0.9	46
164	The light curve of asteroid 2867 Steins measured by VIRTIS-M during the Rosetta fly-by. Planetary and Space Science, 2010, 58, 1066-1076.	0.9	11
165	Eclipsing binary Trojan asteroid Patroclus: Thermal inertia from Spitzer observations. Icarus, 2010, 205, 505-515.	1.1	68
166	E-Type Asteroid (2867) Steins as Imaged by OSIRIS on Board Rosetta. Science, 2010, 327, 190-193.	6.0	120
167	A NEW CHRONOLOGY FOR THE MOON AND MERCURY. Astronomical Journal, 2009, 137, 4936-4948.	1.9	152
168	Triple F—a comet nucleus sample return mission. Experimental Astronomy, 2009, 23, 809-847.	1.6	14
169	Thermal inertia of near-Earth asteroids and implications for the magnitude of the Yarkovsky effect. Icarus, 2007, 190, 236-249.	1.1	207
170	Dawn Mission to Vesta and Ceres. Earth, Moon and Planets, 2007, 101, 65-91.	0.3	125
171	The Rolis Experiment on the Rosetta Lander. Space Science Reviews, 2007, 128, 241-255.	3.7	39
172	Virtis: An Imaging Spectrometer for the Rosetta Mission. Space Science Reviews, 2007, 128, 529-559.	3.7	181
173	CIVA. Space Science Reviews, 2007, 128, 397-412.	3.7	47
174	Exploring the asteroid belt with ion propulsion: Dawn mission history, status and plans. Advances in Space Research, 2007, 40, 193-201.	1.2	32
175	Dawn Discovery mission to Vesta and Ceres: Present status. Advances in Space Research, 2006, 38, 2043-2048.	1.2	26
176	Photometric survey of binary near-Earth asteroids. Icarus, 2006, 181, 63-93.	1.1	250
177	Tumbling asteroids. Icarus, 2005, 173, 108-131.	1.1	127
178	Spectral study of the Eunomia asteroid family. Icarus, 2005, 175, 452-463.	1.1	30
179	Dawn: A journey in space and time. Planetary and Space Science, 2004, 52, 465-489.	0.9	100
180	Digitization and Scientific Exploitation of the Italian and Vatican Astronomical Plate Archives. Experimental Astronomy, 2003, 15, 29-43.	1.6	19

#	Article	IF	CITATIONS
181	Mutual Eclipse Events in Asteroidal Binary System 1996 FG3: Observations and a Numerical Model. Icarus, 2000, 146, 556-567.	1.1	48
182	The Mars NetLander panoramic camera. Planetary and Space Science, 2000, 48, 1377-1392.	0.9	5
183	The Lightcurve and Colors of Unusual Minor Planet 1996 PW. Icarus, 1998, 132, 418-430.	1.1	21
184	A Study of Hilda Asteroids. Icarus, 1998, 133, 247-285.	1.1	15
185	Virtis : an imaging spectrometer for the rosetta mission. Planetary and Space Science, 1998, 46, 1291-1304.	0.9	72
186	The EUNEASO Project: A European NEO Search, Follow-up, and Physical Observation Programme. Annals of the New York Academy of Sciences, 1997, 822, 27-28.	1.8	0
187	The European NEO Search Project within EUNEASO. Annals of the New York Academy of Sciences, 1997, 822, 29-30.	1.8	ο
188	The Near-Earth Objects Follow-Up Program. Icarus, 1997, 130, 275-286.	1.1	23
189	Physical model of near-earth asteroid 6489 golevka (1991 JX) from optical and infrared observations Astronomical Journal, 1997, 114, 1234.	1.9	28
190	Photometric Observations and Modeling of Asteroid 1620 Geographos. Icarus, 1996, 123, 227-244.	1.1	22
191	Rotationally Resolved Spectra of 1620 Geographos. Icarus, 1995, 113, 456-459.	1.1	4
192	The Near-Earth Objects Follow-Up Program: First Results. Icarus, 1995, 117, 62-70.	1.1	67
193	Lightcurves and pole determinations for the asteroids 69 Hesperia, 79 Eurynome and 852 Wladilena. Planetary and Space Science, 1995, 43, 1013-1017.	0.9	4
194	The slow rotation of 253 Mathilde. Planetary and Space Science, 1995, 43, 1609-1613.	0.9	49
195	Galileo Photometry of Asteroid 951 Gaspra. Icarus, 1994, 107, 37-60.	1.1	117
196	Spectral signature of satellite fragments re-entering the Earth's atmosphere: A laboratory simulation. Planetary and Space Science, 1994, 42, 441-446.	0.9	5
197	Colour variations of asteroid 243 Ida. Planetary and Space Science, 1994, 42, 21-25.	0.9	10
198	Ground-Based Photometry of Asteroid 951 Gaspra. Icarus, 1993, 101, 213-222.	1.1	12

#	Article	IF	CITATIONS
199	Asteroid 243 Ida: Groundbased Photometry and a Pre-Galileo Physical Model. Icarus, 1993, 105, 310-325.	1.1	34
200	Asteroid 951 Gaspra: Pre-Galileo physical model. Icarus, 1992, 97, 124-129.	1.1	12