Thomas R Scheibel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2613385/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4527-4532.	3.3	712
2	Strategies and Molecular Design Criteria for 3D Printable Hydrogels. Chemical Reviews, 2016, 116, 1496-1539.	23.0	580
3	Spider Silk: From Soluble Protein to Extraordinary Fiber. Angewandte Chemie - International Edition, 2009, 48, 3584-3596.	7.2	473
4	Polymeric materials based on silk proteins. Polymer, 2008, 49, 4309-4327.	1.8	438
5	Controlling silk fibroin particle features for drug delivery. Biomaterials, 2010, 31, 4583-4591.	5.7	433
6	A conserved spider silk domain acts as a molecular switch that controls fibre assembly. Nature, 2010, 465, 239-242.	13.7	380
7	Assembly mechanism of recombinant spider silk proteins. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6590-6595.	3.3	339
8	Primary Structure Elements of Spider Dragline Silks and Their Contribution to Protein Solubilityâ€. Biochemistry, 2004, 43, 13604-13612.	1.2	335
9	Composite materials based on silk proteins. Progress in Polymer Science, 2010, 35, 1093-1115.	11.8	286
10	The elaborate structure of spider silk. Prion, 2008, 2, 154-161.	0.9	284
11	Decoding the secrets of spider silk. Materials Today, 2011, 14, 80-86.	8.3	279
12	Spider silks: recombinant synthesis, assembly, spinning, and engineering of synthetic proteins. Microbial Cell Factories, 2004, 3, 14.	1.9	248
13	Two chaperone sites in Hsp90 differing in substrate specificity and ATP dependence. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 1495-1499.	3.3	242
14	Biomimetic Fibers Made of Recombinant Spidroins with the Same Toughness as Natural Spider Silk. Advanced Materials, 2015, 27, 2189-2194.	11.1	217
15	Biotechnological Production of Spider-Silk Proteins Enables New Applications. Macromolecular Bioscience, 2007, 7, 401-409.	2.1	216
16	Biomedical Applications of Recombinant Silkâ€Based Materials. Advanced Materials, 2018, 30, e1704636.	11.1	216
17	Silkâ€based materials for biomedical applications. Biotechnology and Applied Biochemistry, 2010, 55, 155-167.	1.4	210
18	Biofabrication of Cellâ€Loaded 3D Spider Silk Constructs. Angewandte Chemie - International Edition, 2015, 54, 2816-2820.	7.2	207

#	Article	IF	CITATIONS
19	Cell adhesion and proliferation on RGD-modified recombinant spider silk proteins. Biomaterials, 2012, 33, 6650-6659.	5.7	184
20	Novel Assembly Properties of Recombinant Spider Dragline Silk Proteins. Current Biology, 2004, 14, 2070-2074.	1.8	175
21	Protein fibers as performance proteins: new technologies and applications. Current Opinion in Biotechnology, 2005, 16, 427-433.	3.3	173
22	Recombinant Spider Silk Proteins for Applications in Biomaterials. Macromolecular Bioscience, 2010, 10, 998-1007.	2.1	166
23	The Hsp90 complex—a super-chaperone machine as a novel drug target. Biochemical Pharmacology, 1998, 56, 675-682.	2.0	164
24	Spider Silk and Amyloid Fibrils: A Structural Comparison. Macromolecular Bioscience, 2007, 7, 183-188.	2.1	161
25	Peptide adsorption on a hydrophobic surface results from an interplay of solvation, surface, and intrapeptide forces. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2842-2847.	3.3	147
26	An Engineered Spider Silk Protein Forms Microspheres. Angewandte Chemie - International Edition, 2008, 47, 4592-4594.	7.2	145
27	Recombinant spider silk particles as drug delivery vehicles. Biomaterials, 2011, 32, 2233-2240.	5.7	137
28	Rheological characterization of hydrogels formed by recombinantly produced spider silk. Applied Physics A: Materials Science and Processing, 2006, 82, 261-264.	1.1	136
29	Hierarchical structures made of proteins. The complex architecture of spider webs and their constituent silk proteins. Chemical Society Reviews, 2010, 39, 156-164.	18.7	135
30	Electroconductive Biohybrid Hydrogel for Enhanced Maturation and Beating Properties of Engineered Cardiac Tissues. Advanced Functional Materials, 2018, 28, 1803951.	7.8	135
31	Processing and modification of films made from recombinant spider silk proteins. Applied Physics A: Materials Science and Processing, 2006, 82, 219-222.	1.1	131
32	pHâ€Dependent Dimerization and Saltâ€Dependent Stabilization of the Nâ€ŧerminal Domain of Spider Dragline Silk—Implications for Fiber Formation. Angewandte Chemie - International Edition, 2011, 50, 310-313.	7.2	123
33	Controlled Hydrogel Formation of a Recombinant Spider Silk Protein. Biomacromolecules, 2011, 12, 2488-2495.	2.6	121
34	Spider Silk for Tissue Engineering Applications. Molecules, 2020, 25, 737.	1.7	120
35	Engineered Microcapsules Fabricated from Reconstituted Spider Silk. Advanced Materials, 2007, 19, 1810-1815.	11.1	119
36	Copolymer/Clay Nanocomposites for Biomedical Applications. Advanced Functional Materials, 2020, 30, 1908101.	7.8	115

#	Article	IF	CITATIONS
37	Recombinant Production of Spider Silk Proteins. Advances in Applied Microbiology, 2013, 82, 115-153.	1.3	111
38	The charged region of Hsp90 modulates the function of the N-terminal domain. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 1297-1302.	3.3	106
39	The role of conformational flexibility in prion propagation and maintenance for Sup35p. , 2001, 8, 958-962.		104
40	Processing Conditions for the Formation of Spider Silk Microspheres. ChemSusChem, 2008, 1, 413-416.	3.6	103
41	Microfluidics-Produced Collagen Fibers Show Extraordinary Mechanical Properties. Nano Letters, 2016, 16, 5917-5922.	4.5	100
42	Spider Silk Coatings as a Bioshield to Reduce Periprosthetic Fibrous Capsule Formation. Advanced Functional Materials, 2014, 24, 2658-2666.	7.8	99
43	ATP-binding Properties of Human Hsp90. Journal of Biological Chemistry, 1997, 272, 18608-18613.	1.6	95
44	Coatings and Films Made of Silk Proteins. ACS Applied Materials & amp; Interfaces, 2014, 6, 15611-15625.	4.0	94
45	Assessment of the ATP Binding Properties of Hsp90. Journal of Biological Chemistry, 1996, 271, 10035-10041.	1.6	91
46	Silk-inspired polymers and proteins. Biochemical Society Transactions, 2009, 37, 677-681.	1.6	91
47	The elongation of yeast prion fibers involves separable steps of association and conversion. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2287-2292.	3.3	89
48	The Amphiphilic Properties of Spider Silks Are Important for Spinning. Angewandte Chemie - International Edition, 2007, 46, 3559-3562.	7.2	88
49	Bidirectional amyloid fiber growth for a yeast prion determinant. Current Biology, 2001, 11, 366-369.	1.8	87
50	Processing of recombinant spider silk proteins into tailor-made materials for biomaterials applications. Current Opinion in Biotechnology, 2014, 29, 62-69.	3.3	84
51	Recombinant Spider Silks—Biopolymers with Potential for Future Applications. Polymers, 2011, 3, 640-661.	2.0	78
52	Structural Analysis of Spider Silk Films. Supramolecular Chemistry, 2006, 18, 465-471.	1.5	77
53	The role of salt and shear on the storage and assembly of spider silk proteins. Journal of Structural Biology, 2010, 170, 413-419.	1.3	76
54	Polymer Gradient Materials: Can Nature Teach Us New Tricks?. Macromolecular Materials and Engineering, 2012, 297, 938-957.	1.7	76

#	Article	IF	CITATIONS
55	Interactions of Fibroblasts with Different Morphologies Made of an Engineered Spider Silk Protein. Advanced Engineering Materials, 2012, 14, B67.	1.6	76
56	The role of terminal domains during storage and assembly of spider silk proteins. Biopolymers, 2012, 97, 355-361.	1.2	75
57	Interactions of cells with silk surfaces. Journal of Materials Chemistry, 2012, 22, 14330.	6.7	74
58	Influence of repeat numbers on self-assembly rates of repetitive recombinant spider silk proteins. Journal of Structural Biology, 2014, 186, 431-437.	1.3	69
59	Structural and functional features of a collagen-binding matrix protein from the mussel byssus. Nature Communications, 2014, 5, 3392.	5.8	66
60	The yeast Sup35NM domain propagates as a prion in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 462-467.	3.3	65
61	Structural characterization and functionalization of engineered spider silk films. Soft Matter, 2010, 6, 4168.	1.2	65
62	Nanomaterial Building Blocks Based on Spider Silk–Oligonucleotide Conjugates. ACS Nano, 2014, 8, 1342-1349.	7.3	63
63	Engineering of silk proteins for materials applications. Current Opinion in Biotechnology, 2019, 60, 213-220.	3.3	62
64	Folding and association of \hat{l}^2 -galactosidase. Journal of Molecular Biology, 1998, 282, 1083-1091.	2.0	60
65	Impact of initial solvent on thermal stability and mechanical properties of recombinant spider silk films. Journal of Materials Chemistry, 2011, 21, 13594.	6.7	60
66	Recombinant spider silk-based bioinks. Biofabrication, 2017, 9, 044104.	3.7	58
67	Enzymatic Degradation of Films, Particles, and Nonwoven Meshes Made of a Recombinant Spider Silk Protein. ACS Biomaterials Science and Engineering, 2015, 1, 247-259.	2.6	56
68	Hydrophobic and Hofmeister Effects on the Adhesion of Spider Silk Proteins onto Solid Substrates:  An AFM-Based Single-Molecule Study. Langmuir, 2008, 24, 1350-1355.	1.6	55
69	To spin or not to spin: spider silk fibers and more. Applied Microbiology and Biotechnology, 2015, 99, 9361-9380.	1.7	55
70	Nature as a blueprint for polymer material concepts: Protein fiber-reinforced composites as holdfasts of mussels. Progress in Polymer Science, 2014, 39, 1564-1583.	11.8	54
71	Biofabrication of 3D constructs: fabrication technologies and spider silk proteins as bioinks. Pure and Applied Chemistry, 2015, 87, 737-749.	0.9	53
72	Mussel collagen molecules with silk-like domains as load-bearing elements in distal byssal threads. Journal of Structural Biology, 2011, 175, 339-347.	1.3	51

#	Article	IF	CITATIONS
73	Spider Silk. Progress in Molecular Biology and Translational Science, 2011, 103, 131-185.	0.9	47
74	Mimicking biopolymers on a molecular scale: nano(bio)technology based on engineered proteins. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 1727-1747.	1.6	46
75	Varying surface hydrophobicities of coatings made of recombinant spider silk proteins. Journal of Materials Chemistry, 2012, 22, 22050.	6.7	46
76	Two-in-One Composite Fibers With Side-by-Side Arrangement of Silk Fibroin and Poly(<scp>l</scp> -lactide) by Electrospinning. Macromolecular Materials and Engineering, 2016, 301, 48-55.	1.7	46
77	Surface Features of Recombinant Spider Silk Protein eADF4(κ16)â€Made Materials are Wellâ€Suited for Cardiac Tissue Engineering. Advanced Functional Materials, 2017, 27, 1701427.	7.8	46
78	Cell-to-cell propagation of infectious cytosolic protein aggregates. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5951-5956.	3.3	45
79	Engineering of Recombinant Spider Silk Proteins Allows Defined Uptake and Release of Substances. Journal of Pharmaceutical Sciences, 2015, 104, 988-994.	1.6	45
80	Foams Made of Engineered Recombinant Spider Silk Proteins as 3D Scaffolds for Cell Growth. ACS Biomaterials Science and Engineering, 2016, 2, 517-525.	2.6	45
81	Preparation and mechanical properties of layers made of recombinant spider silk proteins and silk from silk worm. Applied Physics A: Materials Science and Processing, 2006, 82, 253-260.	1.1	44
82	Permeability of silk microcapsules made by the interfacial adsorption of protein. Physical Chemistry Chemical Physics, 2007, 9, 6442.	1.3	44
83	Structural Analysis of Proteinaceous Components in Byssal Threads of the Mussel <i>Mytilus galloprovincialis</i> . Macromolecular Bioscience, 2009, 9, 162-168.	2.1	44
84	Structural Insights into Water-Based Spider Silk Protein–Nanoclay Composites with Excellent Gas and Water Vapor Barrier Properties. ACS Applied Materials & Interfaces, 2016, 8, 25535-25543.	4.0	44
85	Engineered hybrid spider silk particles as delivery system for peptide vaccines. Biomaterials, 2018, 172, 105-115.	5.7	44
86	Multifunctional Biomaterials: Combining Material Modification Strategies for Engineering of Cell-Contacting Surfaces. ACS Applied Materials & amp; Interfaces, 2020, 12, 21342-21367.	4.0	43
87	<scp>Chitosanâ€based</scp> nanocomposites for medical applications. Journal of Polymer Science, 2021, 59, 1610-1642.	2.0	43
88	Production and processing of spider silk proteins. Journal of Polymer Science Part A, 2009, 47, 3957-3963.	2.5	42
89	Recombinant Production, Characterization, and Fiber Spinning of an Engineered Short Major Ampullate Spidroin (MaSp1s). Biomacromolecules, 2017, 18, 1365-1372.	2.6	41
90	Structure and post-translational modifications of the web silk protein spidroin-1 from Nephila spiders. Journal of Proteomics, 2014, 105, 174-185.	1.2	40

#	Article	IF	CITATIONS
91	Enhanced cellular uptake of engineered spider silk particles. Biomaterials Science, 2015, 3, 543-551.	2.6	40
92	Structural changes of thin films from recombinant spider silk proteins upon post-treatment. Applied Physics A: Materials Science and Processing, 2007, 89, 655-661.	1.1	39
93	Characterization of recombinantly produced spider flagelliform silk domains. Journal of Structural Biology, 2010, 170, 420-425.	1.3	39
94	Dragline, Egg Stalk and Byssus: A Comparison of Outstanding Protein Fibers and Their Potential for Developing New Materials. Advanced Functional Materials, 2013, 23, 4467-4482.	7.8	39
95	Surface Modification of Polymeric Biomaterials Using Recombinant Spider Silk Proteins. ACS Biomaterials Science and Engineering, 2017, 3, 767-775.	2.6	39
96	Interplay of Different Major Ampullate Spidroins during Assembly and Implications for Fiber Mechanics. Advanced Materials, 2021, 33, e2006499.	11.1	39
97	Engineered Spider Silk Proteinâ€≺scp>Based Composites for Drug Delivery. Macromolecular Bioscience, 2013, 13, 1431-1437.	2.1	38
98	Foundation of the Outstanding Toughness in Biomimetic and Natural Spider Silk. Biomacromolecules, 2017, 18, 3954-3962.	2.6	38
99	Centrifugal Electrospinning Enables the Production of Meshes of Ultrathin Polymer Fibers. ACS Applied Polymer Materials, 2020, 2, 4360-4367.	2.0	36
100	Spider Silk Capsules as Protective Reaction Containers for Enzymes. Advanced Functional Materials, 2014, 24, 763-768.	7.8	35
101	The Power of Silk Technology for Energy Applications. Advanced Energy Materials, 2021, 11, 2100519.	10.2	34
102	Single molecule force measurements delineate salt, pH and surface effects on biopolymer adhesion. Physical Biology, 2009, 6, 025004.	0.8	33
103	Mechanical Testing of Engineered Spider Silk Filaments Provides Insights into Molecular Features on a Mesoscale. ACS Applied Materials & Interfaces, 2017, 9, 892-900.	4.0	33
104	Noxic effects of polystyrene microparticles on murine macrophages and epithelial cells. Scientific Reports, 2021, 11, 15702.	1.6	33
105	Formulation of poorly water-soluble substances using self-assembling spider silk protein. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 331, 126-132.	2.3	32
106	Glycopolymer Functionalization of Engineered Spider Silk Proteinâ€based Materials for Improved Cell Adhesion. Macromolecular Bioscience, 2014, 14, 936-942.	2.1	32
107	<p>Enhanced Antibacterial Activity of Se Nanoparticles Upon Coating with Recombinant Spider Silk Protein eADF4(κ16)</p> . International Journal of Nanomedicine, 2020, Volume 15, 4275-4288.	3.3	31

#	Article	IF	CITATIONS
109	Probing the Role of PrP Repeats in Conformational Conversion and Amyloid Assembly of Chimeric Yeast Prions. Journal of Biological Chemistry, 2007, 282, 34204-34212.	1.6	30
110	Alternative assembly pathways of the amyloidogenic yeast prion determinant Sup35–NM. EMBO Reports, 2007, 8, 1196-1201.	2.0	30
111	Learning From Nature: Synthesis and Characterization of Longitudinal Polymer Gradient Materials Inspired by Mussel Byssus Threads. Macromolecular Rapid Communications, 2012, 33, 206-211.	2.0	30
112	Controllable cell adhesion, growth and orientation on layered silk protein films. Biomaterials Science, 2013, 1, 1244.	2.6	30
113	Engineered spider silk-based 2D and 3D materials prevent microbial infestation. Materials Today, 2020, 41, 21-33.	8.3	30
114	Silk-Based Materials for Hard Tissue Engineering. Materials, 2021, 14, 674.	1.3	30
115	Aqueous electrospinning of recombinant spider silk proteins. Materials Science and Engineering C, 2020, 106, 110145.	3.8	30
116	Controlled Hierarchical Assembly of Spider Silk-DNA Chimeras into Ribbons and Raft-Like Morphologies. Nano Letters, 2014, 14, 3999-4004.	4.5	29
117	Acidic Residues Control the Dimerization of the N-terminal Domain of Black Widow Spiders' Major Ampullate Spidroin 1. Scientific Reports, 2016, 6, 34442.	1.6	29
118	Intrinsic Vascularization of Recombinant eADF4(C16) Spider Silk Matrices in the Arteriovenous Loop Model. Tissue Engineering - Part A, 2019, 25, 1504-1513.	1.6	29
119	Supposedly identical microplastic particles substantially differ in their material properties influencing particle-cell interactions and cellular responses. Journal of Hazardous Materials, 2022, 425, 127961.	6.5	29
120	Control of Drug Loading and Release Properties of Spider Silk Sub-Microparticles. BioNanoScience, 2012, 2, 67-74.	1.5	28
121	Air Filter Devices Including Nonwoven Meshes of Electrospun Recombinant Spider Silk Proteins. Journal of Visualized Experiments, 2013, , e50492.	0.2	28
122	Biomineralization of Engineered Spider Silk Protein-Based Composite Materials for Bone Tissue Engineering. Materials, 2016, 9, 560.	1.3	28
123	Conformational Stability and Interplay of Helical N- and C-Terminal Domains with Implications on Major Ampullate Spidroin Assembly. Biomacromolecules, 2017, 18, 835-845.	2.6	28
124	Microfluidic nozzle device for ultrafine fiber solution blow spinning with precise diameter control. Lab on A Chip, 2018, 18, 2225-2234.	3.1	28
125	Utilizing Conformational Changes for Patterning Thin Films of Recombinant Spider Silk Proteins. Biomacromolecules, 2012, 13, 3189-3199.	2.6	27
126	Ultrathin Spider Silk Films: Insights into Spider Silk Assembly on Surfaces. ACS Applied Polymer Materials, 2019, 1, 3366-3374.	2.0	27

#	Article	IF	CITATIONS
127	<i>In Vivo</i> Coating of Bacterial Magnetic Nanoparticles by Magnetosome Expression of Spider Silk-Inspired Peptides. Biomacromolecules, 2018, 19, 962-972.	2.6	26
128	Pristine and artificially-aged polystyrene microplastic particles differ in regard to cellular response. Journal of Hazardous Materials, 2022, 435, 128955.	6.5	26
129	Conquering isoleucine auxotrophy of Escherichia coli BLR(DE3) to recombinantly produce spider silk proteins in minimal media. Biotechnology Letters, 2007, 29, 1741-1744.	1.1	25
130	Nerve guidance conduit design based on self-rolling tubes. Materials Today Bio, 2020, 5, 100042.	2.6	25
131	Enhanced vascularization and de novo tissue formation in hydrogels made of engineered RGD-tagged spider silk proteins in the arteriovenous loop model. Biofabrication, 2021, 13, 045003.	3.7	25
132	Silk nanofibril selfâ€assembly versus electrospinning. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2018, 10, e1509.	3.3	24
133	The MyoRobot: A novel automated biomechatronics system to assess voltage/Ca2+ biosensors and active/passive biomechanics in muscle and biomaterials. Biosensors and Bioelectronics, 2018, 102, 589-599.	5.3	24
134	Roll-to-Roll Production of Spider Silk Nanofiber Nonwoven Meshes Using Centrifugal Electrospinning for Filtration Applications. Molecules, 2020, 25, 5540.	1.7	24
135	Artificial Egg Stalks Made of a Recombinantly Produced Lacewing Silk Protein. Angewandte Chemie - International Edition, 2012, 51, 6521-6524.	7.2	23
136	Micromechanical characterization of spider silk particles. Biomaterials Science, 2013, 1, 1160.	2.6	23
137	Dimerization of the Conserved N-Terminal Domain of a Spider Silk Protein Controls the Self-Assembly of the Repetitive Core Domain. Biomacromolecules, 2017, 18, 2521-2528.	2.6	23
138	Recombinant Spider Silk Gels Derived from Aqueous–Organic Solvents as Depots for Drugs. Angewandte Chemie - International Edition, 2021, 60, 11847-11851.	7.2	23
139	Functional Amyloids Used by Organisms: A Lesson in Controlling Assembly. Macromolecular Chemistry and Physics, 2010, 211, 127-135.	1.1	22
140	Cellular uptake of drug loaded spider silk particles. Biomaterials Science, 2016, 4, 1515-1523.	2.6	22
141	Self-Assembly of Spider Silk-Fusion Proteins Comprising Enzymatic and Fluorescence Activity. Bioconjugate Chemistry, 2018, 29, 898-904.	1.8	22
142	Recombinant Spider Silk–Silica Hybrid Scaffolds with Drugâ€Releasing Properties for Tissue Engineering Applications. Macromolecular Rapid Communications, 2020, 41, e1900426.	2.0	22
143	Designed Spider Silk-Based Drug Carrier for Redox- or pH-Triggered Drug Release. Biomacromolecules, 2020, 21, 4904-4912.	2.6	22
144	Dependence of Mechanical Properties of Lacewing Egg Stalks on Relative Humidity. Biomacromolecules, 2012, 13, 3730-3735.	2.6	21

#	Article	IF	CITATIONS
145	Colloidal Properties of Recombinant Spider Silk Protein Particles. Journal of Physical Chemistry C, 2016, 120, 18015-18027.	1.5	21
146	Cations influence the cross-linking of hydrogels made of recombinant, polyanionic spider silk proteins. Materials Letters, 2016, 183, 101-104.	1.3	21
147	Recombinant Spider Silk Hydrogels for Sustained Release of Biologicals. ACS Biomaterials Science and Engineering, 2018, 4, 1750-1759.	2.6	21
148	Recombinant Production of Mussel Byssus Inspired Proteins. Biotechnology Journal, 2018, 13, e1800146.	1.8	21
149	Surface Modification of Spider Silk Particles to Direct Biomolecular Corona Formation. ACS Applied Materials & Mat	4.0	21
150	Recombinant spider silk protein eADF4(C16)-RGD coatings are suitable for cardiac tissue engineering. Scientific Reports, 2020, 10, 8789.	1.6	21
151	Ion and seed dependent fibril assembly of a spidroin core domain. Journal of Structural Biology, 2015, 191, 130-138.	1.3	20
152	Recombinant Spider Silk and Collagen-Based Nerve Guidance Conduits Support Neuronal Cell Differentiation and Functionality in Vitro. ACS Applied Bio Materials, 2019, 2, 4872-4880.	2.3	20
153	Protein Gradient Films of Fibroin and Gelatine. Macromolecular Bioscience, 2013, 13, 1396-1403.	2.1	19
154	Designing of spider silk proteins for human induced pluripotent stem cell-based cardiac tissue engineering. Materials Today Bio, 2021, 11, 100114.	2.6	19
155	Data for microbe resistant engineered recombinant spider silk protein based 2D and 3D materials. Data in Brief, 2020, 32, 106305.	0.5	19
156	Probing the adhesion properties of alginate hydrogels: a new approach towards the preparation of soft colloidal probes for direct force measurements. Soft Matter, 2017, 13, 578-589.	1.2	18
157	Prion protein/protein interactions: fusion with yeast Sup35pâ€NM modulates cytosolic PrP aggregation in mammalian cells. FASEB Journal, 2008, 22, 762-773.	0.2	17
158	Surface properties of spider silk particles in solution. Biomaterials Science, 2013, 1, 1166.	2.6	17
159	Coacervation of the Recombinant <i>Mytilus galloprovincialis</i> Foot Protein-3b. Biomacromolecules, 2018, 19, 3612-3619.	2.6	17
160	Functionalized DNA-spider silk nanohydrogels for controlled protein binding and release. Materials Today Bio, 2020, 6, 100045.	2.6	17
161	Patterning of proteinâ€based materials. Biopolymers, 2021, 112, e23412.	1.2	17
162	Silkâ€Based Fine Dust Filters for Air Filtration. Advanced Sustainable Systems, 2017, 1, 1700079.	2.7	17

#	Article	IF	CITATIONS
163	Sea star-inspired recombinant adhesive proteins self-assemble and adsorb on surfaces in aqueous environments to form cytocompatible coatings. Acta Biomaterialia, 2020, 112, 62-74.	4.1	16
164	Contribution of N- and C-terminal domains to the function of Hsp90 in Saccharomyces cerevisiae. Molecular Microbiology, 1999, 34, 701-713.	1.2	15
165	Universal nanothin silk coatings <i>via</i> controlled spidroin self-assembly. Biomaterials Science, 2019, 7, 683-695.	2.6	15
166	Amyloid Formation of a Yeast Prion Determinant. Journal of Molecular Neuroscience, 2004, 23, 013-022.	1.1	14
167	Spatial stochastic resonance in protein hydrophobicity. Physics Letters, Section A: General, Atomic and Solid State Physics, 2005, 346, 33-41.	0.9	14
168	Spinnenseidenproteine: Grundlage für neue Materialien. Chemie in Unserer Zeit, 2007, 41, 306-314.	0.1	14
169	Effect of oculopharyngeal muscular dystrophy-associated extension of seven alanines on the fibrillation properties of the N-terminal domain of PABPN1. FEBS Journal, 2007, 274, 346-355.	2.2	14
170	Interfacial rheological properties of recombinant spider-silk proteins. Biointerphases, 2009, 4, 43-46.	0.6	14
171	Applicability of biotechnologically produced insect silks. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2017, 72, 365-385.	0.6	14
172	Molecular Design of Performance Proteins With Repetitive Sequences. Methods in Molecular Biology, 2008, 474, 3-14.	0.4	14
173	Processing of Continuous Nonâ€Crosslinked Collagen Fibers for Microtissue Formation at the Muscleâ€Tendon Interface. Advanced Functional Materials, 0, , 2112238.	7.8	14
174	Engineered Collagen: A Redox Switchable Framework for Tunable Assembly and Fabrication of Biocompatible Surfaces. ACS Biomaterials Science and Engineering, 2018, 4, 2106-2114.	2.6	13
175	Spider Silk Fusion Proteins for Controlled Collagen Binding and Biomineralization. ACS Biomaterials Science and Engineering, 2020, 6, 5599-5608.	2.6	13
176	Nanostructured, Self-Assembled Spider Silk Materials for Biomedical Applications. Advances in Experimental Medicine and Biology, 2019, 1174, 187-221.	0.8	13
177	Site‣pecific Functionalization of Recombinant Spider Silk Janus Fibers. Angewandte Chemie - International Edition, 2022, 61, .	7.2	13
178	Biosynthesis of an Elastin-Mimetic Polypeptide with Two Different Chemical Functional Groups within the Repetitive Elastin Fragment. Macromolecular Bioscience, 2005, 5, 494-501.	2.1	12
179	Silk–a biomaterial with several facets. Applied Physics A: Materials Science and Processing, 2006, 82, 191-192.	1.1	12
180	Influence of divalent copper, manganese and zinc ions on fibril nucleation and elongation of the amyloid-like yeast prion determinant Sup35p-NM. Journal of Inorganic Biochemistry, 2009, 103, 1711-1720.	1.5	12

#	Article	IF	CITATIONS
181	Towards the Recombinant Production of Mussel Byssal Collagens. Journal of Adhesion, 2010, 86, 10-24.	1.8	12
182	Structural diversity of a collagen-binding matrix protein from the byssus of blue mussels upon refolding. Journal of Structural Biology, 2014, 186, 75-85.	1.3	12
183	Data for ion and seed dependent fibril assembly of a spidroin core domain. Data in Brief, 2015, 4, 571-576.	0.5	12
184	Statistical approaches for investigating silk properties. Applied Physics A: Materials Science and Processing, 2006, 82, 243-251.	1.1	11
185	Characterization of natural and biomimetic spider silk fibers. Bioinspired, Biomimetic and Nanobiomaterials, 2012, 1, 83-94.	0.7	11
186	Routes towards Novel Collagen-Like Biomaterials. Fibers, 2018, 6, 21.	1.8	11
187	Self-Rolling Refillable Tubular Enzyme Containers Made of Recombinant Spider Silk and Chitosan. ACS Applied Materials & Interfaces, 2019, 11, 15290-15297.	4.0	11
188	Impact of Cell Loading of Recombinant Spider Silk Based Bioinks on Gelation and Printability. Macromolecular Bioscience, 2022, 22, e2100390.	2.1	11
189	Lipid-Specific β-Sheet Formation in a Mussel Byssus Protein Domain. Biomacromolecules, 2013, 14, 3238-3245.	2.6	10
190	Properties of Engineered and Fabricated Silks. Sub-Cellular Biochemistry, 2017, 82, 527-573.	1.0	10
191	Biotechnological production of the mussel byssus derived collagen preColD. RSC Advances, 2017, 7, 38273-38278.	1.7	10
192	Characterization of Hydrogels Made of a Novel Spider Silk Protein eMaSp1s and Evaluation for 3D Printing. Macromolecular Bioscience, 2017, 17, 1700141.	2.1	9
193	Nanoscale Patterning of Surfaces via DNA Directed Spider Silk Assembly. Biomacromolecules, 2019, 20, 347-352.	2.6	9
194	Approaches to inhibit biofilm formation applying natural and artificial silk-based materials. Materials Science and Engineering C, 2021, 131, 112458.	3.8	9
195	A mussel polyphenol oxidase-like protein shows thiol-mediated antioxidant activity. European Polymer Journal, 2019, 113, 305-312.	2.6	8
196	Impacts of Blended Bombyx mori Silk Fibroin and Recombinant Spider Silk Fibroin Hydrogels on Cell Growth. Polymers, 2021, 13, 4182.	2.0	8
197	Structure–Property Relationship Based on the Amino Acid Composition of Recombinant Spider Silk Proteins for Potential Biomedical Applications. ACS Applied Materials & Interfaces, 2022, 14, 31751-31766.	4.0	8
198	Self-assembly of nucleic acids, silk and hybrid materials thereof. Journal of Physics Condensed Matter, 2014, 26, 503102.	0.7	7

#	Article	IF	CITATIONS
199	Sequence Identification, Recombinant Production, and Analysis of the Self-Assembly of Egg Stalk Silk Proteins from Lacewing Chrysoperla carnea. Biomolecules, 2017, 7, 43.	1.8	7
200	SpiderMAEn: recombinant spider silk-based hybrid materials for advanced energy technology. Bioinspired, Biomimetic and Nanobiomaterials, 2019, 8, 99-108.	0.7	7
201	Microbial repellence properties of engineered spider silk coatings prevent biofilm formation of opportunistic bacterial strains. MRS Communications, 2021, 11, 356-362.	0.8	7
202	Crystallization and preliminary X-ray diffraction analysis of proximal thread matrix protein 1 (PTMP1) from <i>Mytilus galloprovincialis</i> . Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 769-772.	0.4	6
203	Spider silk foam coating of fabric. Pure and Applied Chemistry, 2017, 89, 1769-1776.	0.9	6
204	Modulating the collagen triple helix formation by switching: Positioning effects of depsi-defects on the assembly of [Gly-Pro-Pro]7 collagen mimetic peptides. European Polymer Journal, 2019, 112, 301-305.	2.6	6
205	The Power of Recombinant Spider Silk Proteins. Biologically-inspired Systems, 2014, , 179-201.	0.4	6
206	Functionalization of biopolymer fibers with magnetic nanoparticles. ChemistrySelect, 2022, 7, 1091-1117.	0.7	6
207	In vitro cultivation of primary intestinal cells from Eisenia fetida as basis for ecotoxicological studies. Ecotoxicology, 2022, 31, 221-233.	1.1	6
208	Dreidimensional gedruckte, zellbeladene Konstrukte aus Spinnenseide. Angewandte Chemie, 2015, 127, 2858-2862.	1.6	5
209	Facile Photochemical Modification of Silk Protein–Based Biomaterials. Macromolecular Bioscience, 2018, 18, e1800216.	2.1	5
210	Continuous Yarn Electrospinning. Textiles, 2022, 2, 124-141.	1.8	5
211	Nanoengineered biomaterials for corneal regeneration. , 2019, , 379-415.		4
212	Dichroic Fourier Transform Infrared Spectroscopy Characterization of the Î ² -Sheet Orientation in Spider Silk Films on Silicon Substrates. Journal of Physical Chemistry B, 2021, 125, 1061-1071.	1.2	4
213	Mimicry of silk utilizing synthetic polypeptides. Progress in Polymer Science, 2022, 130, 101557.	11.8	4
214	Altering Silk Film Surface Properties through Lotus‣ike Mechanisms. Macromolecular Materials and Engineering, 2018, 303, 1700637.	1.7	3
215	Free-standing spider silk webs of the thomisid Saccodomus formivorus are made of composites comprising micro- and submicron fibers. Scientific Reports, 2020, 10, 17624.	1.6	3
216	Recombinant major ampullate spidroin-particles as biotemplates for manganese carbonate mineralization. Multifunctional Materials, 2021, 4, 014002.	2.4	3

#	Article	IF	CITATIONS
217	Crosslinked polypeptide films via RAFT mediated continuous assembly of polymers. Angewandte Chemie - International Edition, 2021, , e202112842.	7.2	3
218	Spinnen wie die Spinnen. Nachrichten Aus Der Chemie, 2008, 56, 516-519.	0.0	2
219	CHAPTER 12. Hierarchical Protein Assemblies as a Basis for Materials. RSC Smart Materials, 2013, , 256-281.	0.1	2
220	Rheological characterization of silk solutions. Green Materials, 2014, 2, 11-23.	1.1	2
221	Life cycle assessment of spider silk nonwoven meshes in an air filtration device. Green Materials, 2015, 3, 15-24.	1.1	2
222	Resonance assignment of an engineered amino-terminal domain of a major ampullate spider silk with neutralized charge cluster. Biomolecular NMR Assignments, 2016, 10, 199-202.	0.4	2
223	Rekombinante Spinnenseidengele aus wäsrigâ€organischen Mischphasen als Wirkstoffdepots. Angewandte Chemie, 2021, 133, 11953-11958.	1.6	2
224	Production and Processing of Spider Silk Proteins. Biopolymers with Application Potential for the Future. International Polymer Science and Technology, 2012, 39, 1-3.	0.1	1
225	Recombinant Silk Production in Bacteria. , 2017, , .		1
226	Ocrepeira klamt sp. n. (Araneae: Araneidae), a novel spider species from an Andean páramo in Colombia. PLoS ONE, 2020, 15, e0237499.	1.1	1
227	Biomimetic Spinning of Recombinant Silk Proteins. Materials Research Society Symposia Proceedings, 2009, 1239, 1.	0.1	Ο
228	Macromol. Chem. Phys. 2/2010. Macromolecular Chemistry and Physics, 2010, 211, .	1.1	0
229	Macromol. Biosci. 9/2010. Macromolecular Bioscience, 2010, 10, n/a-n/a.	2.1	0
230	Toward Activatable Collagen Mimics: Combining DEPSI "Switch―Defects and Templateâ€Guided Selfâ€Organization to Control Collagen Mimetic Peptides. Macromolecular Bioscience, 2021, 21, 2100070.	2.1	0
231	Seitenspezifische Funktionalisierung von Janusfasern aus rekombinanter Spinnenseide. Angewandte Chemie, 0, , .	1.6	0
232	Vernetzte Polypeptide durch RAFTâ€vermittelte Polymerisation zum kontinuierlichen Aufbau von Polymerfilmen. Angewandte Chemie, 0, , .	1.6	0