

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2612963/publications.pdf Version: 2024-02-01

VI SHEN

#	Article	IF	CITATIONS
1	Micromechanics of soft materials using microfluidics. MRS Bulletin, 2022, 47, 119-126.	1.7	8
2	Aging can transform single-component protein condensates into multiphase architectures. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	44
3	Recent Advances in Microgels: From Biomolecules to Functionality. Small, 2022, 18, .	5.2	20
4	From Protein Building Blocks to Functional Materials. ACS Nano, 2021, 15, 5819-5837.	7.3	83
5	Controlled self-assembly of plant proteins into high-performance multifunctional nanostructured films. Nature Communications, 2021, 12, 3529.	5.8	50
6	Liquid–Liquid Phaseâ€Separated Systems from Reversible Gel–Sol Transition of Protein Microgels. Advanced Materials, 2021, 33, e2008670.	11.1	18
7	Liquid–Liquid Phaseâ€Separated Systems from Reversible Gel–Sol Transition of Protein Microgels (Adv.) Tj E	TQq1_1 0. 11.1	784314 rg8
8	Deformable and Robust Core–Shell Protein Microcapsules Templated by Liquid–Liquid Phase‣eparated Microdroplets. Advanced Materials Interfaces, 2021, 8, 2101071.	1.9	8
9	Modulating the Mechanical Performance of Macroscale Fibers through Shearâ€Induced Alignment and Assembly of Protein Nanofibrils. Small, 2020, 16, e1904190.	5.2	39
10	Biomolecular condensates undergo a generic shear-mediated liquid-to-solid transition. Nature Nanotechnology, 2020, 15, 841-847.	15.6	101
11	Microfluidic Templating: Microfluidic Templating of Spatially Inhomogeneous Protein Microgels (Small 32/2020). Small, 2020, 16, 2070178.	5.2	2
12	Microfluidic Templating of Spatially Inhomogeneous Protein Microgels. Small, 2020, 16, e2000432.	5.2	11
13	RNA Granules Hitchhike on Lysosomes for Long-Distance Transport, Using Annexin A11 as a Molecular Tether. Cell, 2019, 179, 147-164.e20.	13.5	327
14	Mechanobiology of Protein Droplets: Force Arises from Disorder. Cell, 2018, 175, 1457-1459.	13.5	21
15	Amyloid fibril systems reduce, stabilize and deliver bioavailable nanosized iron. Nature Nanotechnology, 2017, 12, 642-647.	15.6	216
16	Amyloid Fibrils form Hybrid Colloidal Gels and Aerogels with Dispersed CaCO ₃ Nanoparticles. Advanced Functional Materials, 2017, 27, 1700897.	7.8	38
17	Colonization, Competition, and Dispersal of Pathogens in Fluid Flow Networks. Current Biology, 2015, 25, 1201-1207.	1.8	49
18	Flow dependent performance of microfluidic microbial fuel cells. Physical Chemistry Chemical Physics, 2014, 16, 12535.	1.3	27

YI SHEN

#	Article	IF	CITATIONS
19	Biofilm streamers cause catastrophic disruption of flow with consequences for environmental and medical systems. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4345-4350.	3.3	283
20	Flow Directs Surface-Attached Bacteria to Twitch Upstream. Biophysical Journal, 2012, 103, 146-151.	0.2	70
21	Shear Stress Increases the Residence Time of Adhesion of Pseudomonas aeruginosa. Biophysical Journal, 2011, 100, 341-350.	0.2	145