

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2612963/publications.pdf Version: 2024-02-01

VI SHEN

#	Article	IF	CITATIONS
1	RNA Granules Hitchhike on Lysosomes for Long-Distance Transport, Using Annexin A11 as a Molecular Tether. Cell, 2019, 179, 147-164.e20.	13.5	327
2	Biofilm streamers cause catastrophic disruption of flow with consequences for environmental and medical systems. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4345-4350.	3.3	283
3	Amyloid fibril systems reduce, stabilize and deliver bioavailable nanosized iron. Nature Nanotechnology, 2017, 12, 642-647.	15.6	216
4	Shear Stress Increases the Residence Time of Adhesion of Pseudomonas aeruginosa. Biophysical Journal, 2011, 100, 341-350.	0.2	145
5	Biomolecular condensates undergo a generic shear-mediated liquid-to-solid transition. Nature Nanotechnology, 2020, 15, 841-847.	15.6	101
6	From Protein Building Blocks to Functional Materials. ACS Nano, 2021, 15, 5819-5837.	7.3	83
7	Flow Directs Surface-Attached Bacteria to Twitch Upstream. Biophysical Journal, 2012, 103, 146-151.	0.2	70
8	Controlled self-assembly of plant proteins into high-performance multifunctional nanostructured films. Nature Communications, 2021, 12, 3529.	5.8	50
9	Colonization, Competition, and Dispersal of Pathogens in Fluid Flow Networks. Current Biology, 2015, 25, 1201-1207.	1.8	49
10	Aging can transform single-component protein condensates into multiphase architectures. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	44
11	Modulating the Mechanical Performance of Macroscale Fibers through Shearâ€Induced Alignment and Assembly of Protein Nanofibrils. Small, 2020, 16, e1904190.	5.2	39
12	Amyloid Fibrils form Hybrid Colloidal Gels and Aerogels with Dispersed CaCO ₃ Nanoparticles. Advanced Functional Materials, 2017, 27, 1700897.	7.8	38
13	Flow dependent performance of microfluidic microbial fuel cells. Physical Chemistry Chemical Physics, 2014, 16, 12535.	1.3	27
14	Mechanobiology of Protein Droplets: Force Arises from Disorder. Cell, 2018, 175, 1457-1459.	13.5	21
15	Recent Advances in Microgels: From Biomolecules to Functionality. Small, 2022, 18, .	5.2	20
16	Liquid–Liquid Phase‧eparated Systems from Reversible Gel–Sol Transition of Protein Microgels. Advanced Materials, 2021, 33, e2008670.	11.1	18
17	Microfluidic Templating of Spatially Inhomogeneous Protein Microgels. Small, 2020, 16, e2000432.	5.2	11
18	Deformable and Robust Core–Shell Protein Microcapsules Templated by Liquid–Liquid Phaseâ€Separated Microdroplets. Advanced Materials Interfaces, 2021, 8, 2101071.	1.9	8

#	Article	IF	CITATIONS
19	Micromechanics of soft materials using microfluidics. MRS Bulletin, 2022, 47, 119-126.	1.7	8

20 Liquid–Liquid Phaseâ€Separated Systems from Reversible Gel–Sol Transition of Protein Microgels (Adv.) Tj ETQq0.0 0 rgBT /Overloch

²¹ Microfluidic Templating: Microfluidic Templating of Spatially Inhomogeneous Protein Microgels 5.2 2 (Small 32/2020). Small, 2020, 16, 2070178.	
--	--