Darrin J Pochan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2611950/publications.pdf

Version: 2024-02-01

147 papers 19,539 citations

70 h-index

138 g-index

147 all docs

147 docs citations

times ranked

147

16968 citing authors

#	Article	IF	CITATIONS
1	Block Copolymer Assembly via Kinetic Control. Science, 2007, 317, 647-650.	6.0	969
2	Responsive Hydrogels from the Intramolecular Folding and Self-Assembly of a Designed Peptide. Journal of the American Chemical Society, 2002, 124, 15030-15037.	6.6	851
3	Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature, 2002, 417, 424-428.	13.7	793
4	Toroidal Triblock Copolymer Assemblies. Science, 2004, 306, 94-97.	6.0	740
5	Synthesis and Antibacterial Properties of Silver Nanoparticles. Journal of Nanoscience and Nanotechnology, 2005, 5, 244-249.	0.9	734
6	Stimuli-responsive polypeptide vesicles by conformation-specific assembly. Nature Materials, 2004, 3, 244-248.	13.3	717
7	Rheological properties of peptide-based hydrogels for biomedical and other applications. Chemical Society Reviews, 2010, 39, 3528.	18.7	641
8	Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7791-7796.	3.3	604
9	Tailored Assemblies of Block Copolymers in Solution: It Is All about the Process. Macromolecules, 2010, 43, 3577-3584.	2.2	474
10	Thermally Reversible Hydrogels via Intramolecular Folding and Consequent Self-Assembly of a de Novo Designed Peptide. Journal of the American Chemical Society, 2003, 125, 11802-11803.	6.6	433
11	Encapsulation of curcumin in self-assembling peptide hydrogels as injectable drug delivery vehicles. Biomaterials, 2011, 32, 5906-5914.	5.7	418
12	Salt-Triggered Peptide Folding and Consequent Self-Assembly into Hydrogels with Tunable Modulus. Macromolecules, 2004, 37, 7331-7337.	2.2	382
13	Light-Activated Hydrogel Formation via the Triggered Folding and Self-Assembly of a Designed Peptide. Journal of the American Chemical Society, 2005, 127, 17025-17029.	6.6	347
14	Charged Polypeptide Vesicles with Controllable Diameter. Journal of the American Chemical Society, 2005, 127, 12423-12428.	6.6	336
15	Poly (l-Lactic Acid)/Layered Silicate Nanocomposite:Â Fabrication, Characterization, and Properties. Chemistry of Materials, 2003, 15, 4317-4324.	3.2	316
16	Inherent Antibacterial Activity of a Peptide-Based \hat{l}^2 -Hairpin Hydrogel. Journal of the American Chemical Society, 2007, 129, 14793-14799.	6.6	316
17	Injectable solid hydrogel: mechanism of shear-thinning and immediate recovery of injectable \hat{l}^2 -hairpin peptide hydrogels. Soft Matter, 2010, 6, 5143.	1.2	298
18	Cytocompatibility of self-assembled β-hairpin peptide hydrogel surfaces. Biomaterials, 2005, 26, 5177-5186.	5 . 7	266

#	Article	IF	Citations
19	Modular Synthesis of Amphiphilic Janus Glycodendrimers and Their Self-Assembly into Glycodendrimersomes and Other Complex Architectures with Bioactivity to Biomedically Relevant Lectins. Journal of the American Chemical Society, 2013, 135, 9055-9077.	6.6	261
20	Polymer Nanocomposites for Biomedical Applications. MRS Bulletin, 2007, 32, 354-358.	1.7	251
21	A Giant Surfactant of Polystyreneâ^'(Carboxylic Acid-Functionalized Polyhedral Oligomeric) Tj ETQq1 1 0.78431-the American Chemical Society, 2010, 132, 16741-16744.	4 rgBT /Ov 6.6	erlock 10 Tf 5 235
22	Highly branched and loop-rich gels via formation of metal–organic cages linked by polymers. Nature Chemistry, 2016, 8, 33-41.	6.6	234
23	Unusual Crystallization Behavior of Organoclay Reinforced Poly(l-lactic acid) Nanocomposites. Macromolecules, 2004, 37, 6480-6491.	2.2	223
24	Macromolecular diffusion and release from self-assembled \hat{l}^2 -hairpin peptide hydrogels. Biomaterials, 2009, 30, 1339-1347.	5.7	212
25	Polypeptide-Templated Synthesis of Hexagonal Silica Platelets. Journal of the American Chemical Society, 2005, 127, 12577-12582.	6.6	208
26	Polymersome Stomatocytes: Controlled Shape Transformation in Polymer Vesicles. Journal of the American Chemical Society, 2010, 132, 12522-12524.	6.6	199
27	Laminated Morphology of Nontwisting \hat{l}^2 -Sheet Fibrils Constructed via Peptide Self-Assembly. Journal of the American Chemical Society, 2005, 127, 16692-16700.	6.6	187
28	Elucidating the assembled structure of amphiphiles in solution via cryogenic transmission electron microscopy. Soft Matter, 2007, 3, 945.	1.2	187
29	Crystallization Behavior of Poly(l-lactic acid) Nanocomposites:Â Nucleation and Growth Probed by Infrared Spectroscopy. Macromolecules, 2005, 38, 6520-6527.	2.2	182
30	Enhanced Mechanical Rigidity of Hydrogels Formed from Enantiomeric Peptide Assemblies. Journal of the American Chemical Society, 2011, 133, 14975-14977.	6.6	175
31	Rapid and Versatile Construction of Diverse and Functional Nanostructures Derived from a Polyphosphoester-Based Biomimetic Block Copolymer System. Journal of the American Chemical Society, 2012, 134, 18467-18474.	6.6	165
32	Helix self-assembly through the coiling of cylindrical micelles. Soft Matter, 2008, 4, 90-93.	1.2	163
33	Tuning the pH Responsiveness of \hat{I}^2 -Hairpin Peptide Folding, Self-Assembly, and Hydrogel Material Formation. Biomacromolecules, 2009, 10, 2619-2625.	2.6	161
34	The effect of protein structure on their controlled release from an injectable peptide hydrogel. Biomaterials, 2010, 31, 9527-9534.	5.7	157
35	Design of an Injectable βâ€Hairpin Peptide Hydrogel That Kills Methicillinâ€Resistant <i>Staphylococcus aureus</i> . Advanced Materials, 2009, 21, 4120-4123.	11.1	156
36	Enzymatically Triggered Self-Assembly of Block Copolymers. Journal of the American Chemical Society, 2009, 131, 13949-13951.	6.6	152

#	Article	IF	Citations
37	Self-assembly of amphiphilic Janus dendrimers into uniform onion-like dendrimersomes with predictable size and number of bilayers. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9058-9063.	3.3	145
38	Synthesis, Characterization, and Morphology of Model Graft Copolymers with Trifunctional Branch Points. Macromolecules, 1996, 29, 7022-7028.	2.2	142
39	Methylated Mono- and Diethyleneglycol Functionalized Polylysines: Nonionic, α-Helical, Water-Soluble Polypeptides. Journal of the American Chemical Society, 1999, 121, 12210-12211.	6.6	141
40	Unique Toroidal Morphology from Composition and Sequence Control of Triblock Copolymers. Journal of the American Chemical Society, 2005, 127, 8592-8593.	6.6	140
41	De Novo Design of Strand-Swapped Î ² -Hairpin Hydrogels. Journal of the American Chemical Society, 2008, 130, 4466-4474.	6.6	136
42	Peptide Hydrogels – Versatile Matrices for 3D Cell Culture in Cancer Medicine. Frontiers in Oncology, 2015, 5, 92.	1.3	136
43	Injectable Solid Peptide Hydrogel as a Cell Carrier: Effects of Shear Flow on Hydrogels and Cell Payload. Langmuir, 2012, 28, 6076-6087.	1.6	127
44	Structurally Defined Nanoscale Sheets from Self-Assembly of Collagen-Mimetic Peptides. Journal of the American Chemical Society, 2014, 136, 4300-4308.	6.6	126
45	Structural Effects on the Biodistribution and Positron Emission Tomography (PET) Imaging of Well-Defined ⁶⁴ Cu-Labeled Nanoparticles Comprised of Amphiphilic Block Graft Copolymers. Biomacromolecules, 2007, 8, 3126-3134.	2.6	125
46	Morphologies of Microphase-Separated A2B Simple Graft Copolymers. Macromolecules, 1996, 29, 5091-5098.	2.2	124
47	Zincâ€Triggered Hydrogelation of a Selfâ€Assembling βâ€Hairpin Peptide. Angewandte Chemie - International Edition, 2011, 50, 1577-1579.	7.2	120
48	Modular Synthesis of Biodegradable Diblock Copolymers for Designing Functional Polymersomes. Journal of the American Chemical Society, 2010, 132, 3654-3655.	6.6	116
49	Peptide Design and Self-assembly into Targeted Nanostructure and Functional Materials. Chemical Reviews, 2021, 121, 13915-13935.	23.0	116
50	Correlations between structure, material properties and bioproperties in self-assembled \hat{l}^2 -hairpin peptide hydrogels. Faraday Discussions, 2008, 139, 251.	1.6	115
51	Disk Morphology and Disk-to-Cylinder Tunability of Poly(Acrylic Acid)-b-Poly(Methyl) Tj ETQq1 1 0.784314 rgBT	Overlock 1	10 ∏f 50 182
52	Structural Analysis and Mechanical Characterization of Hyaluronic Acid-Based Doubly Cross-Linked Networks. Macromolecules, 2009, 42, 537-546.	2.2	112
53	Semiflexible Chain Networks Formed via Self-Assembly ofl ² -Hairpin Molecules. Physical Review Letters, 2004, 93, 268106.	2.9	109
54	Nanoparticles with Tunable Internal Structure from Triblock Copolymers of PAA- <i>b</i> -PMA- <i>b</i> -PS. Nano Letters, 2008, 8, 2023-2026.	4.5	108

#	Article	IF	Citations
55	Gelation Kinetics of Î ² -Hairpin Peptide Hydrogel Networks. Macromolecules, 2006, 39, 6608-6614.	2.2	102
56	Origins of toroidal micelle formation through charged triblock copolymer self-assembly. Soft Matter, 2009, 5, 1269-1278.	1.2	102
57	Controlling Micellar Structure of Amphiphilic Charged Triblock Copolymers in Dilute Solution via Coassembly with Organic Counterions of Different Spacer Lengths. Macromolecules, 2006, 39, 6599-6607.	2.2	99
58	Controlled biodegradation of Self-assembling \hat{l}^2 -hairpin Peptide hydrogels by proteolysis with matrix metalloproteinase-13. Biomaterials, 2011, 32, 6471-6477.	5.7	97
59	Rheology of peptideâ€and proteinâ€based physical hydrogels: Are everyday measurements just scratching the surface?. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2015, 7, 34-68.	3.3	92
60	"Single–Single―Amphiphilic Janus Dendrimers Self-Assemble into Uniform Dendrimersomes with Predictable Size. ACS Nano, 2014, 8, 1554-1565.	7.3	91
61	Dependence of Self-Assembled Peptide Hydrogel Network Structure on Local Fibril Nanostructure. Macromolecules, 2009, 42, 7137-7145.	2.2	87
62	Glycodendrimersomes from Sequence-Defined Janus Glycodendrimers Reveal High Activity and Sensor Capacity for the Agglutination by Natural Variants of Human Lectins. Journal of the American Chemical Society, 2015, 137, 13334-13344.	6.6	87
63	Rod–rod and rod–coil self-assembly and phase behavior of polypeptide diblock copolymers. Polymer, 2004, 45, 1951-1957.	1.8	85
64	Helicalâ€Ribbon Formation by a βâ€Amino Acid Modified Amyloid βâ€Peptide Fragment. Angewandte Chemie - International Edition, 2009, 48, 2317-2320.	7.2	85
65	Direct Observation of Early-Time Hydrogelation in \hat{I}^2 -Hairpin Peptide Self-Assembly. Macromolecules, 2008, 41, 5763-5772.	2.2	83
66	SANS and Cryo-TEM Study of Self-Assembled Diblock Copolypeptide Hydrogels with Rich Nano- through Microscale Morphology. Macromolecules, 2002, 35, 5358-5360.	2.2	82
67	Folding, Self-Assembly, and Bulk Material Properties of a <i>De Novo</i> Designed Three-Stranded β-Sheet Hydrogel. Biomacromolecules, 2009, 10, 1295-1304.	2.6	82
68	Probing the importance of lateral hydrophobic association in self-assembling peptide hydrogelators. European Biophysics Journal, 2006, 35, 162-169.	1.2	79
69	Polymers with controlled assembly and rigidity made with click-functional peptide bundles. Nature, 2019, 574, 658-662.	13.7	79
70	Effect of Chemistry and Morphology on the Biofunctionality of Self-Assembling Diblock Copolypeptide Hydrogels. Biomacromolecules, 2004, 5, 312-318.	2.6	75
71	Beta Hairpin Peptide Hydrogels as an Injectable Solid Vehicle for Neurotrophic Growth Factor Delivery. Biomacromolecules, 2015, 16, 2672-2683.	2.6	73
72	Fast Dynamics of Semiflexible Chain Networks of Self-Assembled Peptides. Biomacromolecules, 2009, 10, 1374-1380.	2.6	72

#	Article	IF	CITATIONS
73	Multicompartment and multigeometry nanoparticle assembly. Soft Matter, 2011, 7, 2500.	1.2	72
74	Morphological Transitions in an I2S Simple Graft Block Copolymer:Â From Folded Sheets to Folded Lace to Randomly Oriented Worms at Equilibrium. Macromolecules, 1996, 29, 5099-5105.	2.2	70
75	Peptideâ°'Silica Hybrid Networks: Biomimetic Control of Network Mechanical Behavior. ACS Nano, 2010, 4, 181-188.	7.3	69
76	Mechano-responsive hydrogels crosslinked by block copolymer micelles. Soft Matter, 2012, 8, 10233.	1.2	68
77	Hierarchical Assembly of Complex Block Copolymer Nanoparticles into Multicompartment Superstructures through Tunable Interparticle Associations. Advanced Functional Materials, 2013, 23, 1767-1773.	7.8	68
78	Pathway toward Large Two-Dimensional Hexagonally Patterned Colloidal Nanosheets in Solution. Journal of the American Chemical Society, 2015, 137, 1392-1395.	6.6	68
79	Polypeptide-based nanocomposite: Structure and properties of poly(L-lysine)/Na+-montmorillonite. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 2579-2586.	2.4	66
80	One-Component Multifunctional Sequence-Defined Ionizable Amphiphilic Janus Dendrimer Delivery Systems for mRNA. Journal of the American Chemical Society, 2021, 143, 12315-12327.	6.6	66
81	Oneâ€Dimensional Gold Nanoparticle Arrays by Electrostatically Directed Organization Using Polypeptide Selfâ€Assembly. Angewandte Chemie - International Edition, 2009, 48, 7078-7082.	7.2	65
82	Heavy metal ion hydrogelation of a self-assembling peptideviacysteinyl chelation. Journal of Materials Chemistry, 2012, 22, 1352-1357.	6.7	65
83	Self-Assembled Nanocages for Hydrophilic Guest Molecules. Journal of the American Chemical Society, 2006, 128, 14599-14605.	6.6	64
84	Poly(acrylic acid- <i>b</i> -styrene) Amphiphilic Multiblock Copolymers as Building Blocks for the Assembly of Discrete Nanoparticles. Macromolecules, 2011, 44, 1942-1951.	2.2	62
85	Thermal Expansion of Supported Thin Polymer Films:  A Direct Comparison of Free Surface vs Total Confinement. Macromolecules, 2001, 34, 3041-3045.	2.2	61
86	Tuning core vs. shell dimensions to adjust the performance of nanoscopic containers for the loading and release of doxorubicin. Journal of Controlled Release, 2011, 152, 37-48.	4.8	61
87	Sustained release of active chemotherapeutics from injectable-solid \hat{l}^2 -hairpin peptide hydrogel. Biomaterials Science, 2016, 4, 839-848.	2.6	61
88	Block copolymer crystalsomes withÂan ultrathin shell to extend blood circulation time. Nature Communications, 2018, 9, 3005.	5 . 8	61
89	Computationally designed peptides for self-assembly of nanostructured lattices. Science Advances, 2016, 2, e1600307.	4.7	58
90	The peptide hormone glucagon forms amyloid fibrils with two coexisting \hat{l}^2 -strand conformations. Nature Structural and Molecular Biology, 2019, 26, 592-598.	3.6	58

#	Article	IF	CITATIONS
91	Î ² -hairpin peptide hydrogels for package delivery. Advanced Drug Delivery Reviews, 2017, 110-111, 127-136.	6.6	56
92	In vitro assessment of the pro-inflammatory potential of \hat{l}^2 -hairpin peptide hydrogels. Biomaterials, 2008, 29, 4164-4169.	5.7	54
93	<i>De Novo</i> Design of a Shear-Thin Recoverable Peptide-Based Hydrogel Capable of Intrafibrillar Photopolymerization. Macromolecules, 2010, 43, 7924-7930.	2.2	53
94	Using polyelectrolyte block copolymers to tune nanostructure assembly. Current Opinion in Colloid and Interface Science, 2006, 11, 330-336.	3.4	51
95	Engineering Complementary Hydrophobic Interactions to Control \hat{I}^2 -Hairpin Peptide Self-Assembly, Network Branching, and Hydrogel Properties. Biomacromolecules, 2014, 15, 3891-3900.	2.6	51
96	Controlled Stacking of Charged Block Copolymer Micelles. Langmuir, 2007, 23, 4689-4694.	1.6	49
97	Introduction: Molecular Self-Assembly. Chemical Reviews, 2021, 121, 13699-13700.	23.0	48
98	Structural analysis of "flexible―liposome formulations: new insights into the skin-penetrating ability of soft nanostructures. Soft Matter, 2012, 8, 10226.	1.2	47
99	Nematic and Columnar Ordering of a PEG–Peptide Conjugate in Aqueous Solution. Chemistry - A European Journal, 2008, 14, 11369-11375.	1.7	46
100	Rational Design of Bisphosphonate Lipid-like Materials for mRNA Delivery to the Bone Microenvironment. Journal of the American Chemical Society, 2022, 144, 9926-9937.	6.6	46
101	Evaluation of Isoprene Chain Extension from PEO Macromolecular Chain Transfer Agents for the Preparation of Dual, Invertible Block Copolymer Nanoassemblies. Macromolecules, 2010, 43, 7128-7138.	2.2	45
102	Heatâ€Induced Morphological Transformation of Supramolecular Nanostructures by Retroâ€Diels–Alder Reaction. Chemistry - A European Journal, 2012, 18, 13091-13096.	1.7	45
103	Hybrid, elastomeric hydrogels crosslinked by multifunctional block copolymer micelles. Soft Matter, 2010, 6, 5293.	1.2	44
104	Hyaluronic Acid-Based Hydrogels Containing Covalently Integrated Drug Depots: Implication for Controlling Inflammation in Mechanically Stressed Tissues. Biomacromolecules, 2013, 14, 3808-3819.	2.6	44
105	Influence of Hydrophobic Face Amino Acids on the Hydrogelation of Î ² -Hairpin Peptide Amphiphiles. Macromolecules, 2015, 48, 1281-1288.	2.2	42
106	Cryogenic Transmission Electron Microscopy for Direct Observation of Polymer and Small-Molecule Materials and Structures in Solution. Polymer Reviews, 2010, 50, 287-320.	5. 3	39
107	Beta-hairpin hydrogels as scaffolds for high-throughput drug discovery in three-dimensional cell culture. Analytical Biochemistry, 2017, 535, 25-34.	1.1	39
108	Morphological transformations in a dually thermoresponsive coil–rod–coil bioconjugate. Soft Matter, 2012, 8, 3832.	1.2	38

#	Article	IF	CITATIONS
109	Reversible Stiffening Transition in \hat{l}^2 -Hairpin Hydrogels Induced by Ion Complexation. Journal of Physical Chemistry B, 2007, 111, 13901-13908.	1.2	37
110	Multigeometry Nanoparticles: Hybrid Vesicle/Cylinder Nanoparticles Constructed with Block Copolymer Solution Assembly and Kinetic Control. Macromolecules, 2015, 48, 5621-5631.	2.2	37
111	Nanotubes, Plates, and Needles: Pathway-Dependent Self-Assembly of Computationally Designed Peptides. Biomacromolecules, 2018, 19, 4286-4298.	2.6	34
112	Responsive organogels formed by supramolecular self assembly of PEG-block-allyl-functionalized racemic polypeptides into $\hat{1}^2$ -sheet-driven polymeric ribbons. Soft Matter, 2013, 9, 5951.	1.2	32
113	Preparation and Characterization of Synthetic Polypeptide Single Crystals with Controlled Thickness. Macromolecules, 2005, 38, 7371-7377.	2.2	28
114	Structureâ^'Property Correlations in Hybrid Polymerâ^'Nanoparticle Electrospun Fibers and Plasmonic Control over their Dichroic Behavior. ACS Nano, 2010, 4, 5551-5558.	7.3	28
115	Assembly Properties of an Alanineâ€Rich, Lysineâ€Containing Peptide and the Formation of Peptide/Polymer Hybrid Hydrogels. Macromolecular Chemistry and Physics, 2011, 212, 229-239.	1.1	28
116	Self-Assembly of Amphiphilic Triblock Terpolymers Mediated by Multifunctional Organic Acids: Vesicles, Toroids, and (Undulated) Ribbons. Macromolecules, 2014, 47, 1672-1683.	2.2	28
117	Architectural Disparity Effects in the Morphology of Dendrimerâ ⁻ 'Linear Coil Diblock Copolymers. Macromolecules, 2002, 35, 9239-9242.	2.2	24
118	Spontaneous shape changes in polymersomes via polymer/polymer segregation. Polymer Chemistry, 2014, 5, 489-501.	1.9	24
119	Recyclable Hybrid Inorganic/Organic Magnetically Active Networks for the Sequestration of Crude Oil from Aqueous Environments. Chemistry of Materials, 2015, 27, 3775-3782.	3.2	24
120	Computational Reverse-Engineering Analysis for Scattering Experiments on Amphiphilic Block Polymer Solutions. Journal of the American Chemical Society, 2019, 141, 14916-14930.	6.6	24
121	Experiments and Simulations of Complex Sugar-Based Coilâ^'Brush Block Polymer Nanoassemblies in Aqueous Solution. ACS Nano, 2019, 13, 5147-5162.	7.3	23
122	Poly(anhydrideâ€ester) and Poly(Nâ€vinylâ€2â€pyrrolidone) Blends: Salicylic Acidâ€Releasing Blends with Hydrogelâ€Like Properties that Reduce Inflammation. Macromolecular Bioscience, 2015, 15, 342-350.	2.1	20
123	Implementation of a High-Throughput Pilot Screen in Peptide Hydrogel-Based Three-Dimensional Cell Cultures. SLAS Discovery, 2019, 24, 714-723.	1.4	20
124	Self-assembly and soluble aggregate behavior of computationally designed coiled-coil peptide bundles. Soft Matter, 2018, 14, 5488-5496.	1.2	19
125	Transition from disordered aggregates to ordered lattices: kinetic control of the assembly of a computationally designed peptide. Organic and Biomolecular Chemistry, 2017, 15, 6109-6118.	1.5	18
126	Fabrication of One- and Two-Dimensional Gold Nanoparticle Arrays on Computationally Designed Self-Assembled Peptide Templates. Chemistry of Materials, 2018, 30, 8510-8520.	3.2	17

#	Article	IF	Citations
127	Hierarchical Self-Assembly of Poly(<scp>d</scp> -glucose carbonate) Amphiphilic Block Copolymers in Mixed Solvents. Macromolecules, 2020, 53, 8581-8591.	2.2	17
128	Twisted Ribbon Aggregates in a Model Peptide System. Langmuir, 2019, 35, 5802-5808.	1.6	16
129	Polyelectrolyte character of rigid rod peptide bundlemer chains constructed <i>via</i> hierarchical self-assembly. Soft Matter, 2019, 15, 9858-9870.	1.2	15
130	Nanofibers Produced by Electrospinning of Ultrarigid Polymer Rods Made from Designed Peptide Bundlemers. ACS Applied Materials & Samp; Interfaces, 2021, 13, 26339-26351.	4.0	14
131	Poly(L-lysine) and clay nanocomposite with desired matrix secondary structure: Effects of polypeptide molecular weight. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 239-252.	2.4	11
132	Amphiphilic Block Co-polyesters Bearing Pendant Cyclic Ketal Groups as Nanocarriers for Controlled Release of Camptothecin. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 1275-1298.	1.9	11
133	Approaching Asymmetry and Versatility in Polymer Assembly. Science, 2012, 337, 530-531.	6.0	10
134	Dynamic protein folding at the surface of stimuliâ€responsive peptide fibrils. Protein Science, 2018, 27, 1243-1251.	3.1	6
135	Spots and stripes. Nature Materials, 2009, 8, 773-774.	13.3	5
136	Recombinant expression of computationally designed peptide-bundlemers in Escherichia coli. Journal of Biotechnology, 2021, 330, 57-60.	1.9	5
137	Computational Design of Single-Peptide Nanocages with Nanoparticle Templating. Molecules, 2022, 27, 1237.	1.7	5
138	Colloid-like solution behavior of computationally designed coiled coil bundlemers. Journal of Colloid and Interface Science, 2022, 606, 1974-1982.	5.0	3
139	Computational Design of Homotetrameric Peptide Bundle Variants Spanning a Wide Range of Charge States. Biomacromolecules, 2022, 23, 1652-1661.	2.6	3
140	Hydrogels Constructed via β-Hairpin Peptide Self-Assembly. ACS Symposium Series, 2006, , 284-297.	0.5	2
141	Automated nanostructure microscopic image characterization and analysis. , 2015, , .		2
142	Soft Matter Emerging Investigators 2019. Soft Matter, 2019, 15, 1079-1086.	1.2	2
143	Neutron Reflectivity Measurements of Molecular Weight Effects on Polymer Mobility near the Polymer/Solid Interface. Materials Research Society Symposia Proceedings, 2000, 629, 1.	0.1	1
144	Intramolecular structure and dynamics in computationally designed peptide-based polymers displaying tunable chain stiffness. Physical Review Materials, 2021, 5, .	0.9	1

Darrin J Pochan

#	Article	IF	CITATIONS
145	The Design and Applications of Beta-Hairpin Peptide Hydrogels. ACS Symposium Series, 2018, , 139-156.	0.5	0
146	Soft Matter Emerging Investigators 2021. Soft Matter, 2021, 17, 3532-3532.	1.2	0
147	Automated Highâ€Throughput Drug Discovery in Peptide Hydrogelâ€Based 3D Cell Cultures. FASEB Journal, 2019, 33, 811.5.	0.2	0