Chong Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/261189/publications.pdf Version: 2024-02-01

СномсТи

#	Article	IF	CITATIONS
1	Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design. Nature Communications, 2016, 7, 11203.	5.8	1,136
2	Multifunctional Mesoporous Composite Microspheres with Well-Designed Nanostructure: A Highly Integrated Catalyst System. Journal of the American Chemical Society, 2010, 132, 8466-8473.	6.6	887
3	Radiative human body cooling by nanoporous polyethylene textile. Science, 2016, 353, 1019-1023.	6.0	764
4	Water splitting–biosynthetic system with CO ₂ reduction efficiencies exceeding photosynthesis. Science, 2016, 352, 1210-1213.	6.0	760
5	25th Anniversary Article: Semiconductor Nanowires – Synthesis, Characterization, and Applications. Advanced Materials, 2014, 26, 2137-2184.	11.1	759
6	Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2862-2867.	3.3	755
7	Transparent air filter for high-efficiency PM2.5 capture. Nature Communications, 2015, 6, 6205.	5.8	690
8	Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light. Nature Nanotechnology, 2016, 11, 1098-1104.	15.6	681
9	Simultaneously Efficient Light Absorption and Charge Separation in WO ₃ /BiVO ₄ Core/Shell Nanowire Photoanode for Photoelectrochemical Water Oxidation. Nano Letters, 2014, 14, 1099-1105.	4.5	652
10	Electrodeposited Cobalt-Sulfide Catalyst for Electrochemical and Photoelectrochemical Hydrogen Generation from Water. Journal of the American Chemical Society, 2013, 135, 17699-17702.	6.6	540
11	A Fully Integrated Nanosystem of Semiconductor Nanowires for Direct Solar Water Splitting. Nano Letters, 2013, 13, 2989-2992.	4.5	506
12	Electrocatalytic Nitrogen Reduction at Low Temperature. Joule, 2018, 2, 846-856.	11.7	429
13	A dual-mode textile for human body radiative heating and cooling. Science Advances, 2017, 3, e1700895.	4.7	399
14	Surface Fluorination of Reactive Battery Anode Materials for Enhanced Stability. Journal of the American Chemical Society, 2017, 139, 11550-11558.	6.6	398
15	A high tap density secondary silicon particle anode fabricated by scalable mechanical pressing for lithium-ion batteries. Energy and Environmental Science, 2015, 8, 2371-2376.	15.6	397
16	A half-wave rectified alternating current electrochemical method for uranium extraction from seawater. Nature Energy, 2017, 2, .	19.8	388
17	Ordered Mesoporous Silicas and Carbons with Large Accessible Pores Templated from Amphiphilic Diblock Copolymer Poly(ethylene oxide)-b-polystyrene. Journal of the American Chemical Society, 2007, 129, 1690-1697.	6.6	377
18	Nanowire–Bacteria Hybrids for Unassisted Solar Carbon Dioxide Fixation to Value-Added Chemicals. Nano Letters, 2015, 15, 3634-3639.	4.5	362

CHONG LIU

#	Article	IF	CITATIONS
19	Favoring the unfavored: Selective electrochemical nitrogen fixation using a reticular chemistry approach. Science Advances, 2018, 4, eaar3208.	4.7	333
20	Large-Scale Synthesis of Transition-Metal-Doped TiO ₂ Nanowires with Controllable Overpotential. Journal of the American Chemical Society, 2013, 135, 9995-9998.	6.6	326
21	Semiconductor Nanowires for Artificial Photosynthesis. Chemistry of Materials, 2014, 26, 415-422.	3.2	314
22	Roll-to-Roll Transfer of Electrospun Nanofiber Film for High-Efficiency Transparent Air Filter. Nano Letters, 2016, 16, 1270-1275.	4.5	289
23	Synthesis of Core/Shell Colloidal Magnetic Zeolite Microspheres for the Immobilization of Trypsin. Advanced Materials, 2009, 21, 1377-1382.	11.1	281
24	Warming up human body by nanoporous metallized polyethylene textile. Nature Communications, 2017, 8, 496.	5.8	280
25	Plasmon-Enhanced Photocatalytic Activity of Iron Oxide on Gold Nanopillars. ACS Nano, 2012, 6, 234-240.	7.3	278
26	Atomic Layer Deposition of Platinum Catalysts on Nanowire Surfaces for Photoelectrochemical Water Reduction. Journal of the American Chemical Society, 2013, 135, 12932-12935.	6.6	256
27	3D Porous Spongeâ€Inspired Electrode for Stretchable Lithiumâ€Ion Batteries. Advanced Materials, 2016, 28, 3578-3583.	11.1	247
28	Hybrid bioinorganic approach to solar-to-chemical conversion. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11461-11466.	3.3	234
29	Facile Synthesis of Hierarchically Porous Carbons from Dual Colloidal Crystal/Block Copolymer Template Approach. Chemistry of Materials, 2007, 19, 3271-3277.	3.2	207
30	In Situ Electrochemically Derived Nanoporous Oxides from Transition Metal Dichalcogenides for Active Oxygen Evolution Catalysts. Nano Letters, 2016, 16, 7588-7596.	4.5	186
31	Direct/Alternating Current Electrochemical Method for Removing and Recovering Heavy Metal from Water Using Graphene Oxide Electrode. ACS Nano, 2019, 13, 6431-6437.	7.3	181
32	Excitation-wavelength-dependent small polaron trapping of photoexcited carriers in α-Fe2O3. Nature Materials, 2017, 16, 819-825.	13.3	178
33	Design of template-stabilized active and earth-abundant oxygen evolution catalysts in acid. Chemical Science, 2017, 8, 4779-4794.	3.7	172
34	Silver nanoparticles boost charge-extraction efficiency in <i>Shewanella</i> microbial fuel cells. Science, 2021, 373, 1336-1340.	6.0	171
35	Electrochemical tuning of olivine-type lithium transition-metal phosphates as efficient water oxidation catalysts. Energy and Environmental Science, 2015, 8, 1719-1724.	15.6	167
36	Ambient nitrogen reduction cycle using a hybrid inorganic–biological system. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6450-6455.	3.3	167

Сномд Liu

#	Article	IF	CITATIONS
37	Three-Dimensional Spirals of Atomic Layered MoS ₂ . Nano Letters, 2014, 14, 6418-6423.	4.5	161
38	Conducting Nanosponge Electroporation for Affordable and High-Efficiency Disinfection of Bacteria and Viruses in Water. Nano Letters, 2013, 13, 4288-4293.	4.5	160
39	Nanowire Photoelectrochemistry. Chemical Reviews, 2019, 119, 9221-9259.	23.0	158
40	Remediation of heavy metal contaminated soil by asymmetrical alternating current electrochemistry. Nature Communications, 2019, 10, 2440.	5.8	156
41	Surfactant-Free, Large-Scale, Solution–Liquid–Solid Growth of Gallium Phosphide Nanowires and Their Use for Visible-Light-Driven Hydrogen Production from Water Reduction. Journal of the American Chemical Society, 2011, 133, 19306-19309.	6.6	147
42	Directed Assembly of Nanoparticle Catalysts on Nanowire Photoelectrodes for Photoelectrochemical CO ₂ Reduction. Nano Letters, 2016, 16, 5675-5680.	4.5	125
43	Close-Packed Nanowire-Bacteria Hybrids for Efficient Solar-Driven CO2 Fixation. Joule, 2020, 4, 800-811.	11.7	124
44	Static Electricity Powered Copper Oxide Nanowire Microbicidal Electroporation for Water Disinfection. Nano Letters, 2014, 14, 5603-5608.	4.5	118
45	Ultra-Large-Pore Mesoporous Carbons Templated from Poly(ethylene oxide)- <i>b</i> -Polystyrene Diblock Copolymer by Adding Polystyrene Homopolymer as a Pore Expander. Chemistry of Materials, 2008, 20, 7281-7286.	3.2	115
46	Physical Biology of the Materials–Microorganism Interface. Journal of the American Chemical Society, 2018, 140, 1978-1985.	6.6	115
47	Mesoporous Monocrystalline TiO ₂ and Its Solid-State Electrochemical Properties. Chemistry of Materials, 2009, 21, 2540-2546.	3.2	114
48	Single-nanowire photoelectrochemistry. Nature Nanotechnology, 2016, 11, 609-612.	15.6	111
49	Femtosecond M _{2,3} -Edge Spectroscopy of Transition-Metal Oxides: Photoinduced Oxidation State Change in α-Fe ₂ O ₃ . Journal of Physical Chemistry Letters, 2013, 4, 3667-3671.	2.1	110
50	Zn-Doped p-Type Gallium Phosphide Nanowire Photocathodes from a Surfactant-Free Solution Synthesis. Nano Letters, 2012, 12, 5407-5411.	4.5	105
51	Design of Amphiphilic ABC Triblock Copolymer for Templating Synthesis of Large-Pore Ordered Mesoporous Carbons with Tunable Pore Wall Thickness. Chemistry of Materials, 2009, 21, 3996-4005.	3.2	102
52	Perfluorocarbon nanoemulsion promotes the delivery of reducing equivalents for electricity-driven microbial CO2 reduction. Nature Catalysis, 2019, 2, 407-414.	16.1	93
53	Nitrogen-Defective Polymeric Carbon Nitride Nanolayer Enabled Efficient Electrocatalytic Nitrogen Reduction with High Faradaic Efficiency. Nano Letters, 2020, 20, 2879-2885.	4.5	92
54	Thick wall mesoporous carbons with a large pore structure templated from a weakly hydrophobic PEO–PMMA diblock copolymer. Journal of Materials Chemistry, 2008, 18, 91-97.	6.7	91

Сномс Liu

#	Article	IF	CITATIONS
55	MoS2-wrapped silicon nanowires for photoelectrochemical water reduction. Nano Research, 2015, 8, 281-287.	5.8	87
56	Engineering the surface of LiCoO2 electrodes using atomic layer deposition for stable high-voltage lithium ion batteries. Nano Research, 2017, 10, 3754-3764.	5.8	78
57	Amidoxime-Functionalized Macroporous Carbon Self-Refreshed Electrode Materials for Rapid and High-Capacity Removal of Heavy Metal from Water. ACS Central Science, 2019, 5, 719-726.	5.3	76
58	A Prussian blue route to nitrogen-doped graphene aerogels as efficient electrocatalysts for oxygen reduction with enhanced active site accessibility. Nano Research, 2017, 10, 1213-1222.	5.8	73
59	Core–Shell Nanofibrous Materials with High Particulate Matter Removal Efficiencies and Thermally Triggered Flame Retardant Properties. ACS Central Science, 2018, 4, 894-898.	5.3	73
60	In Situ Investigation on the Nanoscale Capture and Evolution of Aerosols on Nanofibers. Nano Letters, 2018, 18, 1130-1138.	4.5	65
61	Use of low cost and easily regenerated Prussian Blue cathodes for efficient electrical energy recovery in a microbial battery. Energy and Environmental Science, 2015, 8, 546-551.	15.6	63
62	Light-Induced Charge Transport within a Single Asymmetric Nanowire. Nano Letters, 2011, 11, 3755-3758.	4.5	57
63	Morphology and property investigation of primary particulate matter particles from different sources. Nano Research, 2018, 11, 3182-3192.	5.8	54
64	Salt-Induced Self-Assembly of Bacteria on Nanowire Arrays. Nano Letters, 2014, 14, 5471-5476.	4.5	48
65	Ambient methane functionalization initiated by electrochemical oxidation of a vanadium (V)-oxo dimer. Nature Communications, 2020, 11, 3686.	5.8	36
66	Alumina-coated Ag nanocrystal monolayers as surfaceenhanced Raman spectroscopy platforms for the direct spectroscopic detection of water splitting reaction intermediates. Nano Research, 2014, 7, 132-143.	5.8	35
67	Controlling the Structure of MoS ₂ Membranes via Covalent Functionalization with Molecular Spacers. Nano Letters, 2020, 20, 7844-7851.	4.5	34
68	Graphene oxide in carbon nitride: from easily processed precursors to a composite material with enhanced photoelectrochemical activity and long-term stability. Journal of Materials Chemistry A, 2019, 7, 11718-11723.	5.2	30
69	Solar-powered CO2 reduction by a hybrid biological inorganic system. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 358, 411-415.	2.0	29
70	A simple approach to the synthesis of hollow microspheres with magnetite/silica hybrid walls. Journal of Colloid and Interface Science, 2009, 333, 329-334.	5.0	28
71	Solution Catalytic Cycle of Incompatible Steps for Ambient Air Oxidation of Methane to Methanol. ACS Central Science, 2019, 5, 1584-1590.	5.3	25
72	Modeling of Electrocatalytic Dinitrogen Reduction on Microstructured Electrodes. Small Methods, 2019, 3, 1800332.	4.6	23

Сномс Liu

#	Article	IF	CITATIONS
73	Machine-Learning-Enabled Exploration of Morphology Influence on Wire-Array Electrodes for Electrochemical Nitrogen Fixation. Journal of Physical Chemistry Letters, 2020, 11, 4625-4630.	2.1	23
74	Surface Valence State Effect of MoO ₂₊ <i>_x</i> on Electrochemical Nitrogen Reduction. Advanced Science, 2022, 9, e2104857.	5.6	23
75	Charge-Free Mixing Entropy Battery Enabled by Low-Cost Electrode Materials. ACS Omega, 2019, 4, 11785-11790.	1.6	21
76	ABC and ABAB Block Copolymers by Electrochemically Controlled Ring-Opening Polymerization. Journal of the American Chemical Society, 2021, 143, 19802-19808.	6.6	20
77	Electricity-powered artificial root nodule. Nature Communications, 2020, 11, 1505.	5.8	19
78	A novel approach to the construction of 3-D ordered macrostructures with polyhedral particles. Journal of Materials Chemistry, 2008, 18, 408-415.	6.7	18
79	Boron-Doped Graphene Catalyzes Dinitrogen Fixation with Electricity. CheM, 2018, 4, 1773-1774.	5.8	17
80	De Novo Approach to Encapsulating Biocatalysts into Synthetic Matrixes: From Enzymes to Microbial Electrocatalysts. ACS Applied Materials & Interfaces, 2021, 13, 52234-52249.	4.0	15
81	Homopolymer induced phase evolution in mesoporous silica from evaporation induced self-assembly process. Microporous and Mesoporous Materials, 2008, 116, 633-640.	2.2	14
82	Temperature nanotracers for fractured reservoirs characterization. Journal of Petroleum Science and Engineering, 2015, 127, 212-228.	2.1	14
83	Two are better than one. Nature Chemistry, 2019, 11, 200-201.	6.6	12
84	Electrochemically mediated deionization: a review. Molecular Systems Design and Engineering, 2021, 6, 25-51.	1.7	12
85	13C-Labeling the carbon-fixation pathway of a highly efficient artificial photosynthetic system. Faraday Discussions, 2017, 198, 529-537.	1.6	11
86	Ag ^{II} â€Mediated Electrocatalytic Ambient CH ₄ Functionalization Inspired by HSAB Theory. Angewandte Chemie - International Edition, 2021, 60, 18152-18161.	7.2	10
87	Development of an Activated Carbon-Based Electrode for the Capture and Rapid Electrolytic Reductive Debromination of Methyl Bromide from Postharvest Fumigations. Environmental Science & Technology, 2016, 50, 11200-11208.	4.6	9
88	Nanoparticle and Microparticle Flow in Porous and Fractured Media: An Experimental Study. , 2011, , .		8
89	Spatial decoupling boosts CO2 electro-biofixation. Nature Catalysis, 2022, 5, 357-358.	16.1	8
90	Efficacy analysis of compartmentalization for ambient CH ₄ activation mediated by a Rh ^{II} metalloradical in a nanowire array electrode. Chemical Science, 2021, 12, 1818-1825.	3.7	7

CHONG LIU

#	Article	IF	CITATIONS
91	Cluster Size Control toward High Performance Solution Processed InGaZnO Thin Film Transistors. ACS Applied Electronic Materials, 2019, 1, 2483-2488.	2.0	6
92	Perfluorocarbon nanoemulsions create a beneficial O2 microenvironment in N2-fixing biological inorganic hybrid. Chem Catalysis, 2021, 1, 704-720.	2.9	6
93	A generalized kinetic model for compartmentalization of organometallic catalysis. Chemical Science, 2022, 13, 1101-1110.	3.7	6
94	Electrocatalytic Methane Functionalization with d ⁰ Early Transition Metals Under Ambient Conditions. Angewandte Chemie - International Edition, 2021, 60, 26630-26638.	7.2	5
95	Tuning transport in graphene oxide membrane with single-site copper (II) cations. IScience, 2022, 25, 104044.	1.9	3
96	Nanowires for Photovoltaics and Artificial Photosynthesis. RSC Smart Materials, 2014, , 277-311.	0.1	2
97	Ag II â€Mediated Electrocatalytic Ambient CH 4 Functionalization Inspired by HSAB Theory. Angewandte Chemie, 2021, 133, 18300-18309.	1.6	2
98	Electrocatalytic Methane Functionalization with d ⁰ Early Transition Metals Under Ambient Conditions. Angewandte Chemie, 2021, 133, 26834-26842.	1.6	1
99	Bisulfate as a redox-active ligand in vanadium-based electrocatalysis for CH ₄ functionalization. Chemical Communications, 2022, 58, 2524-2527.	2.2	1
100	Introductory lecture: Systems materials engineering approach for solar-to-chemical conversion. Faraday Discussions, 2014, 176, 9-16.	1.6	0
101	Microscopic Control of Nonequilibrium Systems: When Electrochemistry Meets Nanotechnology. Nano Letters, 2021, 21, 7429-7431.	4.5	0
102	Electrochemical Activation of Small Molecules with Microbial Catalysts. ECS Meeting Abstracts, 2020. MA2020-02. 2841-2841.	0.0	0