
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2611601/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oxidative stress activates a positive feedback between the γ―and βâ€secretase cleavages of the βâ€amyloid precursor protein. Journal of Neurochemistry, 2008, 104, 683-695.	2.1	287
2	Modulation of the oxidative stress and inflammatory response by PPAR-Î ³ agonists in the hippocampus of rats exposed to cerebral ischemia/reperfusion. European Journal of Pharmacology, 2006, 530, 70-80.	1.7	274
3	The upâ€regulation of BACE1 mediated by hypoxia and ischemic injury: role of oxidative stress and HIF1α. Journal of Neurochemistry, 2009, 108, 1045-1056.	2.1	217
4	Dietary Sugars and Endogenous Formation of Advanced Glycation Endproducts: Emerging Mechanisms of Disease. Nutrients, 2017, 9, 385.	1.7	153
5	Oxidative Stress Impairs Skeletal Muscle Repair in Diabetic Rats. Diabetes, 2004, 53, 1082-1088.	0.3	151
6	Oxidative Stress Triggers Cardiac Fibrosis in the Heart of Diabetic Rats. Endocrinology, 2008, 149, 380-388.	1.4	151
7	Oxidative stress and inflammatory response evoked by transient cerebral ischemia/reperfusion: Effects of the PPAR-α agonist WY14643. Free Radical Biology and Medicine, 2006, 41, 579-589.	1.3	143
8	AGEs/RAGE complex upregulates BACE1 via NF-κB pathway activation. Neurobiology of Aging, 2012, 33, 196.e13-196.e27.	1.5	123
9	Valproic acid, a histone deacetylase inhibitor, enhances sensitivity to doxorubicin in anaplastic thyroid cancer cells. Journal of Endocrinology, 2006, 191, 465-472.	1.2	112
10	Oxidative Stress-Dependent Impairment of Cardiac-Specific Transcription Factors in Experimental Diabetes. Endocrinology, 2006, 147, 5967-5974.	1.4	109
11	Dehydroepiandrosterone protects tissues of streptozotocin-treated rats against oxidative stress. Free Radical Biology and Medicine, 1999, 26, 1467-1474.	1.3	106
12	4-Hydroxynonenal as a selective pro-fibrogenic stimulus for activated human hepatic stellate cells. Journal of Hepatology, 2004, 40, 60-68.	1.8	103
13	Effect of <i>n</i> -3 fatty acids on patients with advanced lung cancer: a double-blind, placebo-controlled study. British Journal of Nutrition, 2012, 108, 327-333.	1.2	101
14	Pharmacological Inhibition of NLRP3 Inflammasome Attenuates Myocardial Ischemia/Reperfusion Injury by Activation of RISK and Mitochondrial Pathways. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-11.	1.9	97
15	Muscle wasting in diabetic and in tumor-bearing rats: Role of oxidative stress. Free Radical Biology and Medicine, 2008, 44, 584-593.	1.3	94
16	Pioglitazone improves lipid and insulin levels in overweight rats on a high cholesterol and fructose diet by decreasing hepatic inflammation. British Journal of Pharmacology, 2010, 160, 1892-1902.	2.7	94
17	Prevention of severe toxic liver injury and oxidative stress in MCP-1-deficient mice. Journal of Hepatology, 2007, 46, 230-238.	1.8	93
18	Oxidative stress and kidney dysfunction due to ischemia/reperfusion in rat: Attenuation by dehydroepiandrosterone. Kidney International, 2003, 64, 836-843.	2.6	91

#	Article	IF	CITATIONS
19	SREBP-1c in nonalcoholic fatty liver disease induced by Western-type high-fat diet plus fructose in rats. Free Radical Biology and Medicine, 2009, 47, 1067-1074.	1.3	91
20	Oxidative derangement in rat synaptosomes induced by hyperglycaemia: restorative effect of dehydroepiandrosterone treatment. Biochemical Pharmacology, 2000, 60, 389-395.	2.0	82
21	Insulin Reduces Cerebral Ischemia/Reperfusion Injury in the Hippocampus of Diabetic Rats. Diabetes, 2009, 58, 235-242.	0.3	77
22	Dehydroepiandrosterone Modulates Nuclear Factor-κB Activation in Hippocampus of Diabetic Rats. Endocrinology, 2002, 143, 3250-3258.	1.4	72
23	Protective Effect of Dehydroepiandrosterone Against Copper-Induced Lipid Peroxidation in the Rat. Free Radical Biology and Medicine, 1997, 22, 1289-1294.	1.3	70
24	Effects of vitamin D on insulin resistance and myosteatosis in diet-induced obese mice. PLoS ONE, 2018, 13, e0189707.	1.1	69
25	Effect of hyperglycaemia and diabetes on acute myocardial ischaemia–reperfusion injury and cardioprotection by ischaemic conditioning protocols. British Journal of Pharmacology, 2020, 177, 5312-5335.	2.7	68
26	TREATMENT WITH THE GLYCOGEN SYNTHASE KINASE-3Î ² INHIBITOR, TDZD-8, AFFECTS TRANSIENT CEREBRAL ISCHEMIA/REPERFUSION INJURY IN THE RAT HIPPOCAMPUS. Shock, 2008, 30, 299-307.	1.0	60
27	Up-Regulation of Advanced Glycated Products Receptors in the Brain of Diabetic Rats Is Prevented by Antioxidant Treatment. Endocrinology, 2005, 146, 5561-5567.	1.4	57
28	Fructose liquid and solid formulations differently affect gut integrity, microbiota composition and related liver toxicity: a comparative in vivo study. Journal of Nutritional Biochemistry, 2018, 55, 185-199.	1.9	53
29	Accumulation of Advanced Glycation End-Products and Activation of the SCAP/SREBP Lipogenetic Pathway Occur in Diet-Induced Obese Mouse Skeletal Muscle. PLoS ONE, 2015, 10, e0119587.	1.1	52
30	Metaflammation: Tissue-Specific Alterations of the NLRP3 Inflammasome Platform in Metabolic Syndrome. Current Medicinal Chemistry, 2018, 25, 1294-1310.	1.2	51
31	Advanced glycation end products promote hepatosteatosis by interfering with SCAP-SREBP pathway in fructose-drinking mice. American Journal of Physiology - Renal Physiology, 2013, 305, G398-G407.	1.6	49
32	High-fructose intake as risk factor for neurodegeneration: Key role for carboxy methyllysine accumulation in mice hippocampal neurons. Neurobiology of Disease, 2016, 89, 65-75.	2.1	49
33	Peroxisome proliferator-activated receptor β/Ĩ´agonism protects the kidney against ischemia/reperfusion injury in diabetic rats. Free Radical Biology and Medicine, 2011, 50, 345-353.	1.3	48
34	Obestatin induced recovery of myocardial dysfunction in type 1 diabetic rats: underlying mechanisms. Cardiovascular Diabetology, 2012, 11, 129.	2.7	48
35	Ischemic preconditioning attenuates the oxidant-dependent mechanisms of reperfusion cell damage and death in rat liver. Liver Transplantation, 2002, 8, 990-999.	1.3	47
36	Reversal of the deleterious effects of chronic dietary HFCS-55 intake by PPAR-δ agonism correlates with impaired NLRP3 inflammasome activation. Biochemical Pharmacology, 2013, 85, 257-264.	2.0	47

#	Article	IF	CITATIONS
37	Targeting the NLRP3 inflammasome to Reduce Diet-induced Metabolic Abnormalities in Mice. Molecular Medicine, 2015, 21, 1025-1037.	1.9	47
38	Dehydroepiandrosterone Administration Counteracts Oxidative Imbalance and Advanced Glycation End Product Formation in Type 2 Diabetic Patients. Diabetes Care, 2007, 30, 2922-2927.	4.3	43
39	ldentification of AnnexinA1 as an Endogenous Regulator of RhoA, and Its Role in the Pathophysiology and Experimental Therapy of Type-2 Diabetes. Frontiers in Immunology, 2019, 10, 571.	2.2	43
40	Oxygen free radical scavenger properties of dehydroepiandrosterone. , 1998, 16, 57-63.		42
41	Maladaptive Modulations of NLRP3 Inflammasome and Cardioprotective Pathways Are Involved in Diet-Induced Exacerbation of Myocardial Ischemia/Reperfusion Injury in Mice. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-12.	1.9	42
42	Pathways of hepatic and renal damage through nonâ€classical activation of the reninâ€angiotensin system in chronic liver disease. Liver International, 2020, 40, 18-31.	1.9	42
43	Effects of Exogenous Dietary Advanced Glycation End Products on the Cross-Talk Mechanisms Linking Microbiota to Metabolic Inflammation. Nutrients, 2020, 12, 2497.	1.7	40
44	Pro-oxidant effect of dehydroepiandrosterone in rats is mediated by PPAR activation. Life Sciences, 2003, 73, 289-299.	2.0	39
45	Dehydroepiandrosterone pretreatment protects rats against the pro-oxidant and necrogenic effects of carbon tetrachloride. Biochemical Pharmacology, 1993, 46, 1689-1694.	2.0	38
46	Chronic administration of saturated fats and fructose differently affect SREBP activity resulting in different modulation of Nrf2 and Nlrp3 inflammasome pathways in mice liver. Journal of Nutritional Biochemistry, 2017, 42, 160-171.	1.9	38
47	Diabetic Cardiomyopathy and Ischemic Heart Disease: Prevention and Therapy by Exercise and Conditioning. International Journal of Molecular Sciences, 2020, 21, 2896.	1.8	38
48	High Sugar Intake and Development of Skeletal Muscle Insulin Resistance and Inflammation in Mice: A Protective Role for PPAR- <i>δ</i> Agonism. Mediators of Inflammation, 2013, 2013, 1-12.	1.4	37
49	Stable Oxidative Cytosine Modifications Accumulate in Cardiac Mesenchymal Cells From Type2 Diabetes Patients. Circulation Research, 2018, 122, 31-46.	2.0	33
50	Liver AP-1 activation due to carbon tetrachloride is potentiated by 1,2-dibromoethane but is inhibited by α-tocopherol or gadolinium chloride. Free Radical Biology and Medicine, 1999, 26, 1108-1116.	1.3	31
51	Oxidative stress and eicosanoids in the kidneys of hyperglycemic rats treated with dehydroepiandrosterone. Free Radical Biology and Medicine, 2001, 31, 935-942.	1.3	27
52	Neutral endopeptidase (EC 3.4.24.11) in cirrhotic liver: A new target to treat portal hypertension?. Journal of Hepatology, 2005, 43, 791-798.	1.8	27
53	Lipid peroxidation and irreversible cell damage: Synergism between carbon tetrachloride and 1,2-dibromoethane in isolated rat hepatocytes. Toxicology and Applied Pharmacology, 1991, 110, 216-222.	1.3	26
54	Development of a new class of potential antiatherosclerosis agents: NO-donor antioxidants. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 5971-5974.	1.0	25

#	Article	IF	CITATIONS
55	Effects of chronic sugar consumption on lipid accumulation and autophagy in the skeletal muscle. European Journal of Nutrition, 2017, 56, 363-373.	4.6	23
56	Prevention of Carbon Tetrachloride-Induced Lipid Peroxidation in Liver Microsomes from Dehydroepiandrosterone-Pretreated Rats. Free Radical Research, 1994, 21, 427-435.	1.5	22
57	NT2 neurons, a classical model for Alzheimer's disease, are highly susceptible to oxidative stress. NeuroReport, 2000, 11, 1865-1869.	0.6	21
58	Multiple courses of G-CSF in patients with decompensated cirrhosis: consistent mobilization of immature cells expressing hepatocyte markers and exploratory clinical evaluation. Hepatology International, 2013, 7, 1075-1083.	1.9	21
59	Variability in Myosteatosis and Insulin Resistance Induced by High-Fat Diet in Mouse Skeletal Muscles. BioMed Research International, 2014, 2014, 1-10.	0.9	21
60	Ammodoremin, an Epimeric Mixture of Prenylated Chromandiones from Ammoniacum. Helvetica Chimica Acta, 1991, 74, 495-500.	1.0	20
61	Dysregulation of SREBP2 induces BACE1 expression. Neurobiology of Disease, 2011, 44, 116-124.	2.1	19
62	Ticagrelor Conditioning Effects Are Not Additive to Cardioprotection Induced by Direct NLRP3 Inflammasome Inhibition: Role of RISK, NLRP3, and Redox Cascades. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-12.	1.9	19
63	Growth inhibition of DMBA-induced rat mammary carcinomas by the antiandrogen flutamide. Journal of Cancer Research and Clinical Oncology, 1995, 121, 150-154.	1.2	17
64	lschaemic preconditioning modulates the activity of Kupffer cells duringin vivoreperfusion injury of rat liver. Cell Biochemistry and Function, 2003, 21, 299-305.	1.4	16
65	Study of the photocatalytic transformation of synephrine: a biogenic amine relevant in anti-doping analysis. Analytical and Bioanalytical Chemistry, 2013, 405, 1105-1113.	1.9	14
66	Role of Chymase in the Development of Liver Cirrhosis and Its Complications: Experimental and Human Data. PLoS ONE, 2016, 11, e0162644.	1.1	14
67	COVIDâ€19 and Liver Cirrhosis: Focus on the Nonclassical Reninâ€Angiotensin System and Implications for Therapy. Hepatology, 2021, 74, 1074-1080.	3.6	14
68	Altered hepatic sphingolipid metabolism in insulin resistant mice: Role of advanced glycation endproducts. Free Radical Biology and Medicine, 2021, 169, 425-435.	1.3	12
69	Advanced glycation end products and chronic inflammation in adult survivors of childhood leukemia treated with hematopoietic stem cell transplantation. Pediatric Blood and Cancer, 2020, 67, e28106.	0.8	10
70	The Mitochondrial Trigger in an Animal Model of Nonalcoholic Fatty Liver Disease. Genes, 2021, 12, 1439.	1.0	10
71	Selective up-regulation of tumor necrosis factor receptor I in tumor-bearing rats with cancer-related cachexia. International Journal of Oncology, 2003, 23, 429.	1.4	9
72	Modulations of the calcineurin/NF-AT pathway in skeletal muscle atrophy. Biochimica Et Biophysica Acta - General Subjects, 2007, 1770, 1028-1036.	1.1	9

#	Article	IF	CITATIONS
73	Reduced Susceptibility to Sugar-Induced Metabolic Derangements and Impairments of Myocardial Redox Signaling in Mice Chronically Fed with D-Tagatose when Compared to Fructose. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-11.	1.9	9
74	In vivo potentiation of 1,2-dibromoethane hepatotoxicity by ethanol through inactivation of glutathione-s-transferase. Chemico-Biological Interactions, 1996, 99, 277-288.	1.7	7
75	Advanced glycation end products and their related signaling cascades in adult survivors of childhood Hodgkin lymphoma: A possible role in the onset of late complications. Free Radical Biology and Medicine, 2022, 178, 76-82.	1.3	7
76	Deletion of RAGE fails to prevent hepatosteatosis in obese mice due to impairment of other AGEs receptors and detoxifying systems. Scientific Reports, 2021, 11, 17373.	1.6	6
77	ACETALDEHYDE INVOLVEMENT IN ETHANOL-INDUCED POTENTIATION OF RAT HEPATOCYTE DAMAGE DUE TO THE CARCINOGEN 1,2-DIBROMOETHANE. Alcohol and Alcoholism, 1995, , .	0.9	5
78	Aging, sex and NLRP3 inflammasome in cardiac ischaemic disease. Vascular Pharmacology, 2022, 145, 107001.	1.0	5
79	Doseâ€dependency of clonidine's effects in ascitic cirrhotic rats: comparison with α1â€adrenergic agonist midodrine. Liver International, 2016, 36, 205-211.	1.9	4
80	Calcium receptors located in fibrotic septa: a new target to reduce portal pressure in liver cirrhosis. Clinical Science, 2013, 125, 67-75.	1.8	3
81	Su1559 - Tissue Renin-Angiotensin System in the Kidney of Ascitic Cirrhosis: An Innocent Bystander or a Protagonist?. Gastroenterology, 2018, 154, S-1178.	0.6	2
82	ETHANOL-INDUCED POTENTIATION OF RAT HEPATOCYTE DAMAGE DUE TO 1,2-DIBROMOETHANE. Alcohol and Alcoholism, 1995, , .	0.9	1
83	Pathogenesis of solute-free water retention in experimental ascitic cirrhosis: is vasopressin the only culprit?. Clinical Science, 2016, 130, 117-124.	1.8	1
84	805 - Impaired Secretion of Renalase into Blood may Lead to Sympathetic Overactivity and Early Sodium Retention in Experimental Liver Cirrhosis. Gastroenterology, 2018, 154, S-1107.	0.6	1
85	Alpha-2A Adrenoceptor Agonist Guanfacine Restores Diuretic Efficiency in Experimental Cirrhotic Ascites: Comparison with Clonidine. PLoS ONE, 2016, 11, e0158486.	1.1	1
86	Development of a New Class of Potential Antiatherosclerosis Agents: NO-Donor Antioxidants ChemInform, 2005, 36, no.	0.1	0
87	Possibile ruolo terapeutico del deidroepiandrosterone (DHEA) nell'insufficienza surrenalica e nell'invecchiamento. L Endocrinologo, 2007, 8, 202-208.	0.0	Ο