
Roberto Ferrari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2611385/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Histone Acetylation Regulates Intracellular pH. Molecular Cell, 2013, 49, 310-321.	4.5	210
2	Epigenetic Reprogramming by Adenovirus e1a. Science, 2008, 321, 1086-1088.	6.0	207
3	Effects of Serelaxin in Patients with Acute Heart Failure. New England Journal of Medicine, 2019, 381, 716-726.	13.9	174
4	In vivo targeting of de novo DNA methylation by histone modifications in yeast and mouse. ELife, 2015, 4, e06205.	2.8	146
5	Scl Represses Cardiomyogenesis in Prospective Hemogenic Endothelium and Endocardium. Cell, 2012, 150, 590-605.	13.5	142
6	Adenovirus Small E1A Employs the Lysine Acetylases p300/CBP and Tumor Suppressor Rb to Repress Select Host Genes and Promote Productive Virus Infection. Cell Host and Microbe, 2014, 16, 663-676.	5.1	88
7	New Small Nuclear RNA Gene-Like Transcriptional Units as Sources of Regulatory Transcripts. PLoS Genetics, 2007, 3, e1.	1.5	82
8	Polycomb Repressive Complex 1 (PRC1) Disassembles RNA Polymerase II Preinitiation Complexes. Journal of Biological Chemistry, 2012, 287, 35784-35794.	1.6	66
9	TFIIIC Binding to Alu Elements Controls Gene Expression via Chromatin Looping and Histone Acetylation. Molecular Cell, 2020, 77, 475-487.e11.	4.5	65
10	Scl binds to primed enhancers in mesoderm to regulate hematopoietic and cardiac fate divergence. EMBO Journal, 2015, 34, 759-777.	3.5	64
11	Reorganization of the host epigenome by a viral oncogene. Genome Research, 2012, 22, 1212-1221.	2.4	61
12	Distinct roles of transcription factors TFIIIB and TFIIIC in RNA polymerase III transcription reinitiation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13442-13447.	3.3	60
13	A Composite Upstream Sequence Motif Potentiates tRNA Gene Transcription in Yeast. Journal of Molecular Biology, 2003, 333, 1-20.	2.0	54
14	Mef2C is a lineage-restricted target of Scl/Tal1 and regulates megakaryopoiesis and B-cell homeostasis. Blood, 2009, 113, 3461-3471.	0.6	51
15	Transcription reinitiation by RNA polymerase III. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 331-341.	0.9	50
16	Hormone-control regions mediate steroid receptor–dependent genome organization. Genome Research, 2019, 29, 29-39.	2.4	49
17	Genome-wide location analysis reveals a role for Sub1 in RNA polymerase III transcription. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14265-14270.	3.3	47
18	Viral manipulation of the host epigenome for oncogenic transformation. Nature Reviews Genetics, 2009, 10, 290-294.	7.7	47

Roberto Ferrari

#	Article	IF	CITATIONS
19	Abf1 and other general regulatory factors control ribosome biogenesis gene expression in budding yeast. Nucleic Acids Research, 2017, 45, 4493-4506.	6.5	41
20	Genome-Wide Binding Map of the HIV-1 Tat Protein to the Human Genome. PLoS ONE, 2011, 6, e26894.	1.1	40
21	Modeling the regulatory network of histone acetylation in <i>Saccharomyces cerevisiae</i> . Molecular Systems Biology, 2007, 3, 153.	3.2	32
22	Mediator and SAGA Have Distinct Roles in Pol II Preinitiation Complex Assembly and Function. Cell Reports, 2012, 2, 1061-1067.	2.9	28
23	Epigenetic Analysis: ChIP-chip and ChIP-seq. Methods in Molecular Biology, 2012, 802, 377-387.	0.4	28
24	A Minimal Promoter for TFIIIC-dependent in Vitro Transcription of snoRNA and tRNA Genes by RNA Polymerase III. Journal of Biological Chemistry, 2006, 281, 23945-23957.	1.6	26
25	Retrotransposons as Drivers of Mammalian Brain Evolution. Life, 2021, 11, 376.	1.1	24
26	A unique epigenetic signature is associated with active DNA replication loci in human embryonic stem cells. Epigenetics, 2014, 9, 257-267.	1.3	23
27	C/EBPα mediates the growth inhibitory effect of progestins on breast cancer cells. EMBO Journal, 2019, 38, e101426.	3.5	15
28	Distinct modes of TATA box utilization by the RNA polymerase III transcription machineries from budding yeast and higher plants. Gene, 2006, 379, 12-25.	1.0	14
29	Transcription reinitiation properties of bacteriophage T7 RNA polymerase. Biochemical and Biophysical Research Communications, 2004, 315, 376-380.	1.0	13
30	A set of accessible enhancers enables the initial response of breast cancer cells to physiological progestin concentrations. Nucleic Acids Research, 2021, 49, 12716-12731.	6.5	13
31	Epigenetic changes mediated by polycomb repressive complex 2 and E2a are associated with drug resistance in a mouse model of lymphoma. Genome Medicine, 2016, 8, 54.	3.6	12
32	The transcription reinitiation properties of RNA polymerase III in the absence of transcription factors. Cellular and Molecular Biology Letters, 2008, 13, 112-8.	2.7	9
33	An RNA Polymerase III General Transcription Factor Engages in Cell Type-Specific Chromatin Looping. International Journal of Molecular Sciences, 2022, 23, 2260.	1.8	4
34	Latent Cardiogenic Potential in Endocardium and Hemogenic Endothelium Revealed in the Absence of Scl/tal1. Blood, 2011, 118, 2362-2362.	0.6	1
35	Scl represses cardiogenesis via distant enhancers during hemogenic endothelium specification. Experimental Hematology, 2013, 41, S16.	0.2	0
36	The third (III) road to cell transformation. Cell Cycle, 2018, 17, 410-411.	1.3	0

#	Article	IF	CITATIONS
37	Mef2C Is a Lineage-Restricted Target Gene of Scl/Tal1 and Regulates Megakaryopoiesis and B-Cell Homeostasis. Blood, 2008, 112, 278-278.	0.6	0
38	Specification and Maintenance of the Scl Induced Hematopoietic Stem Cell Fate Blood, 2009, 114, 1504-1504.	0.6	0
39	Scl/Tal1 Directly Activates Hematopoiesis and Represses Cardiogenesis During Mesodermal Diversification. Blood, 2012, 120, 3446-3446.	0.6	0